{"title":"Line Graph Associated to Graph of a Near-Ring with Respect to an Ideal","authors":"Moytri Sarmah","doi":"10.5556/J.TKJM.52.2021.3326","DOIUrl":null,"url":null,"abstract":"Let N be a near-ring and I be an ideal of N. The graph of N with respect to I is a graph with V (N ) as vertex set and any two distinct vertices x and y are adjacent if and only if xNy ⊆ I oryNx ⊆ I. This graph is denoted by GI(N). We define the line graph of GI(N) as a graph with each edge of GI (N ) as vertex and any two distinct vertices are adjacent if and only if their corresponding edges share a common vertex in the graph GI (N ). We denote this graph by L(GI (N )). We have discussed the diameter, girth, clique number, dominating set of L(GI(N)). We have also found conditions for the graph L(GI(N)) to be acycle graph.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.52.2021.3326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let N be a near-ring and I be an ideal of N. The graph of N with respect to I is a graph with V (N ) as vertex set and any two distinct vertices x and y are adjacent if and only if xNy ⊆ I oryNx ⊆ I. This graph is denoted by GI(N). We define the line graph of GI(N) as a graph with each edge of GI (N ) as vertex and any two distinct vertices are adjacent if and only if their corresponding edges share a common vertex in the graph GI (N ). We denote this graph by L(GI (N )). We have discussed the diameter, girth, clique number, dominating set of L(GI(N)). We have also found conditions for the graph L(GI(N)) to be acycle graph.
期刊介绍:
To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.