Pierre-François Gimenez, Jonathan Roux, E. Alata, G. Auriol, M. Kaâniche, V. Nicomette
{"title":"RIDS","authors":"Pierre-François Gimenez, Jonathan Roux, E. Alata, G. Auriol, M. Kaâniche, V. Nicomette","doi":"10.1145/3441458","DOIUrl":null,"url":null,"abstract":"The expansion of the Internet-of-Things (IoT) market is visible in homes, factories, public places, and smart cities. While the massive deployment of connected devices offers opportunities to improve quality of life and to develop new services, the impact of such devices on the security of the users in a context where the level of malicious threat continues to increase is a major concern. One of the challenges is the heterogeneity and constant evolution of wireless technologies and protocols used. To overcome this problem, we propose RIDS, a Radio Intrusion Detection System that is based on the monitoring and profiling of radio communications at the physical layer level using autoencoder neural networks. RIDS is independent of the wireless protocols and modulation technologies used. Besides, it is designed to provide a threefold diagnosis of the detected anomalies: temporal (start and end date of the detected anomaly), frequential (main frequency of the anomaly), and spatial (location of the origin of the anomaly). To demonstrate the relevance and the efficiency of our approach, we collected a large dataset of radio-communications recorded with three different probes deployed in an experimental room. Multiple real-world attacks involving a wide variety of communication technologies are also injected to assess the detection and diagnosis efficiency. The results demonstrate the efficiency of RIDS in detecting and diagnosing anomalies that occurred in the 400–500 Mhz and 800–900 Mhz frequency bands. It is noteworthy that compromised devices and attacks using these communication bands are generally not easily covered by traditional solutions.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"13 1","pages":"1 - 1"},"PeriodicalIF":2.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3441458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
The expansion of the Internet-of-Things (IoT) market is visible in homes, factories, public places, and smart cities. While the massive deployment of connected devices offers opportunities to improve quality of life and to develop new services, the impact of such devices on the security of the users in a context where the level of malicious threat continues to increase is a major concern. One of the challenges is the heterogeneity and constant evolution of wireless technologies and protocols used. To overcome this problem, we propose RIDS, a Radio Intrusion Detection System that is based on the monitoring and profiling of radio communications at the physical layer level using autoencoder neural networks. RIDS is independent of the wireless protocols and modulation technologies used. Besides, it is designed to provide a threefold diagnosis of the detected anomalies: temporal (start and end date of the detected anomaly), frequential (main frequency of the anomaly), and spatial (location of the origin of the anomaly). To demonstrate the relevance and the efficiency of our approach, we collected a large dataset of radio-communications recorded with three different probes deployed in an experimental room. Multiple real-world attacks involving a wide variety of communication technologies are also injected to assess the detection and diagnosis efficiency. The results demonstrate the efficiency of RIDS in detecting and diagnosing anomalies that occurred in the 400–500 Mhz and 800–900 Mhz frequency bands. It is noteworthy that compromised devices and attacks using these communication bands are generally not easily covered by traditional solutions.