Dynamics of singular complex analytic vector fields with essential singularities II

IF 0.4 Q4 MATHEMATICS
Alvaro Alvarez-Parrilla, Jesús Muciño-Raymundo
{"title":"Dynamics of singular complex analytic vector fields with essential singularities II","authors":"Alvaro Alvarez-Parrilla, Jesús Muciño-Raymundo","doi":"10.5427/jsing.2022.24a","DOIUrl":null,"url":null,"abstract":"Generically, the singular complex analytic vector fields $X$ on the Riemann sphere $\\widehat{\\mathbb{C}}_{z}$ belonging to the family $$ \\mathscr{E}(r,d)=\\Big\\{ X(z)=\\frac{1}{P(z)}\\ \\text{e}^{E(z)}\\frac{\\partial}{\\partial z} \\ \\big\\vert \\ P, E\\in\\mathbb{C}[z], \\ deg(P)=r, \\ deg(E)=d \\Big\\}, $$ have an essential singularity of finite 1-order at infinity and a finite number of poles on the complex plane. We describe $X$, particularly the singularity at $\\infty\\in\\widehat{\\mathbb{C}}_{z}$. \nIn order to do so, we use the natural $correspondence$ between $X\\in\\mathscr{E}(r,d)$, a global singular analytic distinguished parameter $\\Psi_X=\\int \\omega_X$, and the Riemann surface $\\mathcal{R}_X$ of the distinguished parameter. \nWe introduce $(r,d)$-$configuration\\ trees$ $\\Lambda_X$: combinatorial objects that completely encode the Riemann surfaces $\\mathcal{R}_X$ and singular flat metrics associated to $X\\in\\mathscr{E}(r,d)$. This provides an alternate `dynamical' coordinate system and an analytic classification of $\\mathscr{E}(r,d)$. Furthermore, the phase portrait of $\\mathscr{Re}(X)$ on $\\mathbb{C}$ is decomposed into $\\mathscr{Re}(X)$-invariant regions: half planes and finite height strip flows. The germ of $X$ at $\\infty \\in \\widehat{\\mathbb{C}}$ is described as an admissible word (equivalent to certain canonical angular sectors). The structural stability of the phase portrait of $\\mathscr{Re}(X)$ is characterized by using $\\Lambda_X$ and the number of topologically equivalent phase portraits of $\\mathscr{Re}(X)$ is bounded.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.24a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Generically, the singular complex analytic vector fields $X$ on the Riemann sphere $\widehat{\mathbb{C}}_{z}$ belonging to the family $$ \mathscr{E}(r,d)=\Big\{ X(z)=\frac{1}{P(z)}\ \text{e}^{E(z)}\frac{\partial}{\partial z} \ \big\vert \ P, E\in\mathbb{C}[z], \ deg(P)=r, \ deg(E)=d \Big\}, $$ have an essential singularity of finite 1-order at infinity and a finite number of poles on the complex plane. We describe $X$, particularly the singularity at $\infty\in\widehat{\mathbb{C}}_{z}$. In order to do so, we use the natural $correspondence$ between $X\in\mathscr{E}(r,d)$, a global singular analytic distinguished parameter $\Psi_X=\int \omega_X$, and the Riemann surface $\mathcal{R}_X$ of the distinguished parameter. We introduce $(r,d)$-$configuration\ trees$ $\Lambda_X$: combinatorial objects that completely encode the Riemann surfaces $\mathcal{R}_X$ and singular flat metrics associated to $X\in\mathscr{E}(r,d)$. This provides an alternate `dynamical' coordinate system and an analytic classification of $\mathscr{E}(r,d)$. Furthermore, the phase portrait of $\mathscr{Re}(X)$ on $\mathbb{C}$ is decomposed into $\mathscr{Re}(X)$-invariant regions: half planes and finite height strip flows. The germ of $X$ at $\infty \in \widehat{\mathbb{C}}$ is described as an admissible word (equivalent to certain canonical angular sectors). The structural stability of the phase portrait of $\mathscr{Re}(X)$ is characterized by using $\Lambda_X$ and the number of topologically equivalent phase portraits of $\mathscr{Re}(X)$ is bounded.
具有本质奇异性的奇异复解析向量场动力学II
一般来说,奇异复解析向量场 $X$ 在黎曼球上 $\widehat{\mathbb{C}}_{z}$ 属于家庭 $$ \mathscr{E}(r,d)=\Big\{ X(z)=\frac{1}{P(z)}\ \text{e}^{E(z)}\frac{\partial}{\partial z} \ \big\vert \ P, E\in\mathbb{C}[z], \ deg(P)=r, \ deg(E)=d \Big\}, $$ 在无穷远处有一个有限一阶的本质奇点,在复平面上有有限个极点。我们描述 $X$,尤其是点的奇点 $\infty\in\widehat{\mathbb{C}}_{z}$. 为了做到这一点,我们使用自然 $correspondence$ 在 $X\in\mathscr{E}(r,d)$,全局奇异解析可分辨参数 $\Psi_X=\int \omega_X$和黎曼曲面 $\mathcal{R}_X$ 已区分参数的。我们介绍 $(r,d)$-$configuration\ trees$ $\Lambda_X$:完全编码黎曼曲面的组合对象 $\mathcal{R}_X$ 和奇异的平面度量相关联 $X\in\mathscr{E}(r,d)$. 这提供了另一种“动态”坐标系统和分析分类 $\mathscr{E}(r,d)$. 此外,阶段肖像 $\mathscr{Re}(X)$ on $\mathbb{C}$ 被分解成 $\mathscr{Re}(X)$-不变区域:半平面和有限高度条形流。的萌芽 $X$ 在 $\infty \in \widehat{\mathbb{C}}$ 被描述为可容许字(相当于某些规范的角扇区)。结构稳定的相画像 $\mathscr{Re}(X)$ 其特点是使用 $\Lambda_X$ 的拓扑等价相图的个数 $\mathscr{Re}(X)$ 是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信