Visual saliency based on selective integration of feature maps in frequency domain

Kitae Park, Jeong Ho Lee, Y. Moon
{"title":"Visual saliency based on selective integration of feature maps in frequency domain","authors":"Kitae Park, Jeong Ho Lee, Y. Moon","doi":"10.1109/ICCE.2013.6486787","DOIUrl":null,"url":null,"abstract":"In this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"26 1","pages":"43-44"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an automatic method for extracting visual saliency based on selective integration of feature maps in frequency domain is proposed. Feature maps are calculated by measuring the Bayes spectral entropy. In order to extract visual saliency effectively, feature maps are first generated from three images separated into Y, Cb, Cr channels, respectively. Then, by selectively integrating feature maps, visual saliency is finally extracted. Experimental results have shown that the proposed method obtains good performance of visual saliency under various environments containing multiple objects and cluttered backgrounds in natural images.
基于频域特征映射选择性积分的视觉显著性
本文提出了一种基于频域特征映射选择性积分的视觉显著性自动提取方法。通过测量贝叶斯谱熵来计算特征映射。为了有效提取视觉显著性,首先将三幅图像分别划分为Y、Cb、Cr通道生成特征图。然后,通过选择性地整合特征映射,最终提取出视觉显著性。实验结果表明,该方法在自然图像中包含多目标和背景杂乱的各种环境下都能获得良好的视觉显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信