Inertial corrections to the Darcy law in a Hele–Shaw cell

Christian Ruyer-Quil
{"title":"Inertial corrections to the Darcy law in a Hele–Shaw cell","authors":"Christian Ruyer-Quil","doi":"10.1016/S1620-7742(01)01309-5","DOIUrl":null,"url":null,"abstract":"<div><p>This note presents a derivation of the appropriate inertial corrections to the Darcy law in a Hele–Shaw cell based on a perturbative method and a polynomial approximation to the velocity field. The obtained equation is optimal in the sense that every method of weighted residuals will converge to it as the number of test functions is increased. A good agreement with the study of the shear instability in a Hele–Shaw cell at low Reynolds number is found.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 5","pages":"Pages 337-342"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01309-5","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

This note presents a derivation of the appropriate inertial corrections to the Darcy law in a Hele–Shaw cell based on a perturbative method and a polynomial approximation to the velocity field. The obtained equation is optimal in the sense that every method of weighted residuals will converge to it as the number of test functions is increased. A good agreement with the study of the shear instability in a Hele–Shaw cell at low Reynolds number is found.

Hele-Shaw单元中达西定律的惯性修正
本文提出了一种基于微扰方法和速度场多项式近似的Hele-Shaw单元中达西定律的适当惯性修正的推导。所得到的方程是最优的,因为随着测试函数数量的增加,每一种加权残差方法都会收敛于它。这与Hele-Shaw细胞在低雷诺数下的剪切不稳定性的研究结果很吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信