{"title":"Heuristics for Finding Sparse Solutions of Linear Inequalities","authors":"Yichen Yang, Zhaohui Liu","doi":"10.1142/s021759592240005x","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of finding a sparse solution, with a minimal number of nonzero components, for a set of linear inequalities. This optimization problem is combinatorial and arises in various fields such as machine learning and compressed sensing. We present three new heuristics for the problem. The first two are greedy algorithms minimizing the sum of infeasibilities in the primal and dual spaces with different selection rules. The third heuristic is a combination of the greedy heuristic in the dual space and a local search algorithm. In numerical experiments, our proposed heuristics are compared with the weighted-[Formula: see text] algorithm and DCA programming with three different non-convex approximations of the zero norm. The computational results demonstrate the efficiency of our methods.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021759592240005x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the problem of finding a sparse solution, with a minimal number of nonzero components, for a set of linear inequalities. This optimization problem is combinatorial and arises in various fields such as machine learning and compressed sensing. We present three new heuristics for the problem. The first two are greedy algorithms minimizing the sum of infeasibilities in the primal and dual spaces with different selection rules. The third heuristic is a combination of the greedy heuristic in the dual space and a local search algorithm. In numerical experiments, our proposed heuristics are compared with the weighted-[Formula: see text] algorithm and DCA programming with three different non-convex approximations of the zero norm. The computational results demonstrate the efficiency of our methods.