Heuristics for Finding Sparse Solutions of Linear Inequalities

Yichen Yang, Zhaohui Liu
{"title":"Heuristics for Finding Sparse Solutions of Linear Inequalities","authors":"Yichen Yang, Zhaohui Liu","doi":"10.1142/s021759592240005x","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of finding a sparse solution, with a minimal number of nonzero components, for a set of linear inequalities. This optimization problem is combinatorial and arises in various fields such as machine learning and compressed sensing. We present three new heuristics for the problem. The first two are greedy algorithms minimizing the sum of infeasibilities in the primal and dual spaces with different selection rules. The third heuristic is a combination of the greedy heuristic in the dual space and a local search algorithm. In numerical experiments, our proposed heuristics are compared with the weighted-[Formula: see text] algorithm and DCA programming with three different non-convex approximations of the zero norm. The computational results demonstrate the efficiency of our methods.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021759592240005x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the problem of finding a sparse solution, with a minimal number of nonzero components, for a set of linear inequalities. This optimization problem is combinatorial and arises in various fields such as machine learning and compressed sensing. We present three new heuristics for the problem. The first two are greedy algorithms minimizing the sum of infeasibilities in the primal and dual spaces with different selection rules. The third heuristic is a combination of the greedy heuristic in the dual space and a local search algorithm. In numerical experiments, our proposed heuristics are compared with the weighted-[Formula: see text] algorithm and DCA programming with three different non-convex approximations of the zero norm. The computational results demonstrate the efficiency of our methods.
寻找线性不等式稀疏解的启发式方法
本文研究了一类线性不等式的非零分量最小的稀疏解问题。这种优化问题是组合的,出现在机器学习和压缩感知等各个领域。我们为这个问题提出了三种新的启发式方法。前两种算法是贪心算法,在不同的选择规则下最小化原空间和对偶空间的不可行和。第三种启发式算法是将对偶空间中的贪婪启发式算法与局部搜索算法相结合。在数值实验中,将我们提出的启发式算法与三种不同的零范数非凸逼近的加权[公式:见文本]算法和DCA规划进行比较。计算结果表明了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信