{"title":"ON A RESULT CONCERNING ALGEBRAIC CURVES PASSING THROUGH $n$-INDEPENDENT NODES","authors":"H. Hakopian","doi":"10.46991/pysu:a/2022.56.3.097","DOIUrl":null,"url":null,"abstract":"Let a set of nodes $\\mathcal X$ in the plane be $n$-independent, i.e. each node has a fundamental polynomial of degree $n.$ Assume that $\\#\\mathcal X=d(n,n-3)+3= (n+1)+n+\\cdots+5+3.$ In this paper we prove that there are at most three linearly independent curves of degree less than or equal to $n-1$ that pass through all the nodes of $\\mathcal X.$ We provide a characterization of the case when there are exactly three such curves. Namely, we prove that then the set $\\mathcal X$ has a very special construction: either all its nodes belong to a curve of degree $n-2,$ or all its nodes but three belong to a (maximal) curve of degree $n-3.$ This result complements a result established recently by H. Kloyan, D. Voskanyan, and H. Hakopian. Note that the proofs of the two results are completely different.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2022.56.3.097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let a set of nodes $\mathcal X$ in the plane be $n$-independent, i.e. each node has a fundamental polynomial of degree $n.$ Assume that $\#\mathcal X=d(n,n-3)+3= (n+1)+n+\cdots+5+3.$ In this paper we prove that there are at most three linearly independent curves of degree less than or equal to $n-1$ that pass through all the nodes of $\mathcal X.$ We provide a characterization of the case when there are exactly three such curves. Namely, we prove that then the set $\mathcal X$ has a very special construction: either all its nodes belong to a curve of degree $n-2,$ or all its nodes but three belong to a (maximal) curve of degree $n-3.$ This result complements a result established recently by H. Kloyan, D. Voskanyan, and H. Hakopian. Note that the proofs of the two results are completely different.