The Effects of Beeswax Additions on the Structural, Thermal, Mechanical and Mass Loss Properties of Soy Wax Blends

IF 1.1 Q4 ENGINEERING, MECHANICAL
Sharifah Imihezri Syed Shaharuddin, Mohd Ashhar Mansor, M. Abdul Rashid, N. Shaffiar, Z. Ahmad
{"title":"The Effects of Beeswax Additions on the Structural, Thermal, Mechanical and Mass Loss Properties of Soy Wax Blends","authors":"Sharifah Imihezri Syed Shaharuddin, Mohd Ashhar Mansor, M. Abdul Rashid, N. Shaffiar, Z. Ahmad","doi":"10.24191/jmeche.v20i1.21079","DOIUrl":null,"url":null,"abstract":"The typical of beeswax, dammar, rosin, paraffin, and microcrystalline wax. batik wax compositions used in Malaysia consist of various blends This study aims to characterize soy wax/beeswax blends’ structural, thermal, strength, and mass loss properties as potential alternative batik wax compositions. The Fourier transform infrared spectroscopy (FTIR) results showed that the additions of beeswax (wt%) into soy wax resulted in possible chemical interaction for the esters (C=O stretching and C-H bending vibrations), hydrocarbons (CH2 scissor formation), and cholestral esters (C=O stretching vibrations). The thermal profile obtained via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively revealed an increase in peak melting temperature and reduced thermal stability of the blends with further increments of beeswax. In addition, beeswax enhances the compression strength by 150% but did not have any significant impact on the modulus of the blends. E valuation of the mass loss test suggested that beeswax in the range of 40 wt% to 60 wt% can be considered as alternative batik resist material due to its moderate leaching tendency. Future works shall be conducted to evaluate the performance of these wax compositions against other batik wax criteria and the feasibility of printing these waxes using an in-house designed batik printer.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i1.21079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The typical of beeswax, dammar, rosin, paraffin, and microcrystalline wax. batik wax compositions used in Malaysia consist of various blends This study aims to characterize soy wax/beeswax blends’ structural, thermal, strength, and mass loss properties as potential alternative batik wax compositions. The Fourier transform infrared spectroscopy (FTIR) results showed that the additions of beeswax (wt%) into soy wax resulted in possible chemical interaction for the esters (C=O stretching and C-H bending vibrations), hydrocarbons (CH2 scissor formation), and cholestral esters (C=O stretching vibrations). The thermal profile obtained via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively revealed an increase in peak melting temperature and reduced thermal stability of the blends with further increments of beeswax. In addition, beeswax enhances the compression strength by 150% but did not have any significant impact on the modulus of the blends. E valuation of the mass loss test suggested that beeswax in the range of 40 wt% to 60 wt% can be considered as alternative batik resist material due to its moderate leaching tendency. Future works shall be conducted to evaluate the performance of these wax compositions against other batik wax criteria and the feasibility of printing these waxes using an in-house designed batik printer.
蜂蜡添加量对大豆蜡共混物结构、热、力学和质量损失性能的影响
典型的蜂蜡、豆蜡、松香、石蜡和微晶蜡。马来西亚使用的蜡蜡成分包括各种混合物。本研究旨在描述大豆蜡/蜂蜡混合物的结构、热、强度和质量损失特性,作为潜在的替代蜡蜡成分。傅里叶变换红外光谱(FTIR)结果表明,蜂蜡(wt%)的加入可能导致酯(C=O拉伸振动和C- h弯曲振动)、碳氢化合物(CH2剪刀形形成)和胆甾酯(C=O拉伸振动)的化学相互作用。通过差示扫描量热法(DSC)和热重分析(TGA)分别获得的热剖面显示,随着蜂蜡用量的增加,共混物的峰值熔化温度升高,热稳定性降低。此外,蜂蜡的抗压强度提高了150%,但对共混物的模量没有显著影响。质量损失试验的E值表明,蜂蜡在40 wt%至60 wt%的范围内,由于其适度的浸出倾向,可以考虑作为抗蜡染材料的替代材料。未来的工作将根据其他蜡染蜡标准评估这些蜡成分的性能,以及使用内部设计的蜡染打印机打印这些蜡的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信