C. Casey, Yichen Qiu, Matthew Bentham, Edward J. Smith, G. Lignani, R. Andre, A. Wood‐Kaczmar, S. Tabrizi
{"title":"B13 Huntington’s disease phenotypes and disrupted corticostriatal connectivity observed in a novel ipsc-derived in vitro co-culture model","authors":"C. Casey, Yichen Qiu, Matthew Bentham, Edward J. Smith, G. Lignani, R. Andre, A. Wood‐Kaczmar, S. Tabrizi","doi":"10.1136/jnnp-2018-EHDN.65","DOIUrl":null,"url":null,"abstract":"Background The corticostriatal (CS) pathway, comprising layer V cortical projection neurons (CPN) and medium spiny neurons (MSN), is one of the first brain pathways to succumb to Huntington’s disease (HD) pathology. As a result, disrupted CS connectivity is evident and contributes to the motor and cognitive symptoms experienced by HD patients. Aims The aim of this work is to investigate the CS pathway using a purely human tissue-derived in vitro system. Methods This project utilizes two familial iPSC lines; the control line, with 20/20 HTT CAG repeat lengths (20Q), and a juvenile HD line, with 20/73 CAG repeats (73Q). These lines were differentiated in parallel to either MSNs or CPNs, and co-cultured in microfluidic chambers to physically recapitulate the human CS pathway. Results High-resolution fluorescence microscopy has revealed the formation of CS synapses within MFC co-cultures, complimented by live cell imaging with calcium binding dye Fluo4, which demonstrates the successful transmission of calcium between neuronal populations within MFCs. CPN cultures show a HD phenotype in their cytoskeletal dynamics, as axon projection efficiency is drastically reduced in 73Q CPNs compared to 20Q. Furthermore, 73Q MSNs exhibit enhanced cell death after BDNF-withdrawal compared to 20Q cultures. Finally, the intrinsic membrane properties of iPSC-derived MSNs also differ with disease state, as 73Q MSNs are hyper-excitable, with an extended latency to fire and extended refractory period. Conclusion These results provide a novel insight into the human CS pathway and suggest subtle differences in both the development and function of the CS pathway in HD.","PeriodicalId":16509,"journal":{"name":"Journal of Neurology, Neurosurgery & Psychiatry","volume":"68 1","pages":"A24 - A24"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology, Neurosurgery & Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/jnnp-2018-EHDN.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background The corticostriatal (CS) pathway, comprising layer V cortical projection neurons (CPN) and medium spiny neurons (MSN), is one of the first brain pathways to succumb to Huntington’s disease (HD) pathology. As a result, disrupted CS connectivity is evident and contributes to the motor and cognitive symptoms experienced by HD patients. Aims The aim of this work is to investigate the CS pathway using a purely human tissue-derived in vitro system. Methods This project utilizes two familial iPSC lines; the control line, with 20/20 HTT CAG repeat lengths (20Q), and a juvenile HD line, with 20/73 CAG repeats (73Q). These lines were differentiated in parallel to either MSNs or CPNs, and co-cultured in microfluidic chambers to physically recapitulate the human CS pathway. Results High-resolution fluorescence microscopy has revealed the formation of CS synapses within MFC co-cultures, complimented by live cell imaging with calcium binding dye Fluo4, which demonstrates the successful transmission of calcium between neuronal populations within MFCs. CPN cultures show a HD phenotype in their cytoskeletal dynamics, as axon projection efficiency is drastically reduced in 73Q CPNs compared to 20Q. Furthermore, 73Q MSNs exhibit enhanced cell death after BDNF-withdrawal compared to 20Q cultures. Finally, the intrinsic membrane properties of iPSC-derived MSNs also differ with disease state, as 73Q MSNs are hyper-excitable, with an extended latency to fire and extended refractory period. Conclusion These results provide a novel insight into the human CS pathway and suggest subtle differences in both the development and function of the CS pathway in HD.