On the dynamics of some vector fields tangent to non-integrable plane fields

IF 0.6 3区 数学 Q3 MATHEMATICS
N. Pia
{"title":"On the dynamics of some vector fields tangent to non-integrable plane fields","authors":"N. Pia","doi":"10.4310/JSG.2021.V19.N2.A3","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{E}^3\\subset TM^n$ be a smooth $3$-distribution on a smooth manifold of dimension $n$ and $\\mathcal{W}\\subset\\mathcal{E}$ a line field such that $[\\mathcal{W},\\mathcal{E}]\\subset\\mathcal{E}$. Under some orientability hypothesis, we give a necessary condition for the existence of a plane field $\\mathcal{D}^2$ such that $\\mathcal{W}\\subset\\mathcal{D}$ and $[\\mathcal{D},\\mathcal{D}]=\\mathcal{E}$. Moreover we study the case where a section of $\\mathcal{W}$ is non-singular Morse-Smale and we get a sufficient condition for the global existence of $\\mathcal{D}$. As a corollary we get conditions for a non-singular vector field $W$ on a $3$-manifold to be Legendrian for a contact structure $\\mathcal{D}$. Similarly with these techniques we can study when an even contact structure $\\mathcal{E}\\subset TM^4$ is induced by an Engel structure $\\mathcal{D}$.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.V19.N2.A3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathcal{E}^3\subset TM^n$ be a smooth $3$-distribution on a smooth manifold of dimension $n$ and $\mathcal{W}\subset\mathcal{E}$ a line field such that $[\mathcal{W},\mathcal{E}]\subset\mathcal{E}$. Under some orientability hypothesis, we give a necessary condition for the existence of a plane field $\mathcal{D}^2$ such that $\mathcal{W}\subset\mathcal{D}$ and $[\mathcal{D},\mathcal{D}]=\mathcal{E}$. Moreover we study the case where a section of $\mathcal{W}$ is non-singular Morse-Smale and we get a sufficient condition for the global existence of $\mathcal{D}$. As a corollary we get conditions for a non-singular vector field $W$ on a $3$-manifold to be Legendrian for a contact structure $\mathcal{D}$. Similarly with these techniques we can study when an even contact structure $\mathcal{E}\subset TM^4$ is induced by an Engel structure $\mathcal{D}$.
关于与不可积平面场相切的若干向量场的动力学
设$\mathcal{E}^3\子集TM^n$是维数$n$和$\mathcal{W}\子集\mathcal{E}$上的光滑$3$-分布,是一个行域,使得$[\mathcal{W},\mathcal{E}]\子集\mathcal{E}$。在可定向性假设下,给出了平面场$\mathcal{D}^2$存在的必要条件,使得$\mathcal{W}\子集\mathcal{D}$和$[\mathcal{D},\mathcal{D}]=\mathcal{E}$。此外,我们还研究了$\mathcal{W}$的一个截面是非奇异的morse - small的情况,得到了$\mathcal{D}$整体存在的一个充分条件。作为一个推论,我们得到了$3$流形上的非奇异向量场$W$对于接触结构$\mathcal{D}$是Legendrian的条件。同样地,我们可以用这些技术来研究当一个偶接触结构$\mathcal{E}\子集TM^4$被一个恩格尔结构$\mathcal{D}$诱导时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信