Predicting interactions and contexts with context trees

Alasdair Thomason, N. Griffiths, Victor Sanchez
{"title":"Predicting interactions and contexts with context trees","authors":"Alasdair Thomason, N. Griffiths, Victor Sanchez","doi":"10.1145/2996913.2996993","DOIUrl":null,"url":null,"abstract":"Predicting the future actions of individuals from geospatial data has the potential to provide a basis for tailored services. This work presents the Predictive Context Tree (PCT), a new hierarchical classifier based on the Context Tree summary model [8]. The PCT is capable of predicting the future contexts and locations of individuals to provide a basis for understanding not only where a user will be, but also what type of activity they will be performing. Through a comparison to established techniques, this paper demonstrates the applicability of the PCT by showing increased accuracies for location prediction, and increased utility through context prediction.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predicting the future actions of individuals from geospatial data has the potential to provide a basis for tailored services. This work presents the Predictive Context Tree (PCT), a new hierarchical classifier based on the Context Tree summary model [8]. The PCT is capable of predicting the future contexts and locations of individuals to provide a basis for understanding not only where a user will be, but also what type of activity they will be performing. Through a comparison to established techniques, this paper demonstrates the applicability of the PCT by showing increased accuracies for location prediction, and increased utility through context prediction.
使用上下文树预测交互和上下文
根据地理空间数据预测个人未来的行动,有可能为量身定制的服务提供基础。本文提出了预测上下文树(PCT),一种基于上下文树摘要模型[8]的新的分层分类器。PCT能够预测个人未来的环境和位置,不仅为了解用户将在哪里,而且为了解他们将从事何种活动提供基础。通过与现有技术的比较,本文展示了PCT的适用性,显示了PCT在位置预测方面的准确性提高,并通过上下文预测提高了实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信