{"title":"NOAA’s Physical Oceanographic Real-Time System (PORTS®)","authors":"R. Edwing","doi":"10.1080/1755876X.2018.1545558","DOIUrl":null,"url":null,"abstract":"ABSTRACT The National Oceanic and Atmospheric Administration’s (NOAA) Physical Oceanographic Real-Time System (PORTS®) is an integrated system of sensors concentrated in seaports that provide accurate and reliable real-time information about environmental conditions. PORTS measures and disseminates observations for water levels, currents, waves, bridge air gap, water temperature, salinity, and meteorological parameters. PORTS was developed and implemented in the early 1990s in response to an accident in Tampa Bay where a vessel struck the Sunshine Skyway Bridge resulting in a substantial loss of life and property. The programme was established as a public-private partnership where the local community funds the establishment and maintenance of the local observing system, and NOAA provides the programme and data management. Today, PORTS has grown to over 30 locations around the country and services over 80% of the tonnage and over 90% of the value of cargo transiting U.S. seaports. A number of economic benefit studies have shown PORTS can reduce accidents by over 50% and significantly increase efficiency. This article examines the evolution of the programme in terms of addressing emerging observational needs, infusing new technology, enhancing products, conducting economic benefit studies, adapting business models, and serving other societal needs.","PeriodicalId":50105,"journal":{"name":"Journal of Operational Oceanography","volume":"86 1","pages":"S176 - S186"},"PeriodicalIF":1.7000,"publicationDate":"2018-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2018.1545558","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT The National Oceanic and Atmospheric Administration’s (NOAA) Physical Oceanographic Real-Time System (PORTS®) is an integrated system of sensors concentrated in seaports that provide accurate and reliable real-time information about environmental conditions. PORTS measures and disseminates observations for water levels, currents, waves, bridge air gap, water temperature, salinity, and meteorological parameters. PORTS was developed and implemented in the early 1990s in response to an accident in Tampa Bay where a vessel struck the Sunshine Skyway Bridge resulting in a substantial loss of life and property. The programme was established as a public-private partnership where the local community funds the establishment and maintenance of the local observing system, and NOAA provides the programme and data management. Today, PORTS has grown to over 30 locations around the country and services over 80% of the tonnage and over 90% of the value of cargo transiting U.S. seaports. A number of economic benefit studies have shown PORTS can reduce accidents by over 50% and significantly increase efficiency. This article examines the evolution of the programme in terms of addressing emerging observational needs, infusing new technology, enhancing products, conducting economic benefit studies, adapting business models, and serving other societal needs.
期刊介绍:
The Journal of Operational Oceanography will publish papers which examine the role of oceanography in contributing to the fields of: Numerical Weather Prediction; Development of Climatologies; Implications of Ocean Change; Ocean and Climate Forecasting; Ocean Observing Technologies; Eutrophication; Climate Assessment; Shoreline Change; Marine and Sea State Prediction; Model Development and Validation; Coastal Flooding; Reducing Public Health Risks; Short-Range Ocean Forecasting; Forces on Structures; Ocean Policy; Protecting and Restoring Ecosystem health; Controlling and Mitigating Natural Hazards; Safe and Efficient Marine Operations