S. Krishnamoorthy, Satvik Mashkaria, Aditya Grover
{"title":"Diffusion Models for Black-Box Optimization","authors":"S. Krishnamoorthy, Satvik Mashkaria, Aditya Grover","doi":"10.48550/arXiv.2306.07180","DOIUrl":null,"url":null,"abstract":"The goal of offline black-box optimization (BBO) is to optimize an expensive black-box function using a fixed dataset of function evaluations. Prior works consider forward approaches that learn surrogates to the black-box function and inverse approaches that directly map function values to corresponding points in the input domain of the black-box function. These approaches are limited by the quality of the offline dataset and the difficulty in learning one-to-many mappings in high dimensions, respectively. We propose Denoising Diffusion Optimization Models (DDOM), a new inverse approach for offline black-box optimization based on diffusion models. Given an offline dataset, DDOM learns a conditional generative model over the domain of the black-box function conditioned on the function values. We investigate several design choices in DDOM, such as re-weighting the dataset to focus on high function values and the use of classifier-free guidance at test-time to enable generalization to function values that can even exceed the dataset maxima. Empirically, we conduct experiments on the Design-Bench benchmark and show that DDOM achieves results competitive with state-of-the-art baselines.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"68 1","pages":"17842-17857"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.07180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The goal of offline black-box optimization (BBO) is to optimize an expensive black-box function using a fixed dataset of function evaluations. Prior works consider forward approaches that learn surrogates to the black-box function and inverse approaches that directly map function values to corresponding points in the input domain of the black-box function. These approaches are limited by the quality of the offline dataset and the difficulty in learning one-to-many mappings in high dimensions, respectively. We propose Denoising Diffusion Optimization Models (DDOM), a new inverse approach for offline black-box optimization based on diffusion models. Given an offline dataset, DDOM learns a conditional generative model over the domain of the black-box function conditioned on the function values. We investigate several design choices in DDOM, such as re-weighting the dataset to focus on high function values and the use of classifier-free guidance at test-time to enable generalization to function values that can even exceed the dataset maxima. Empirically, we conduct experiments on the Design-Bench benchmark and show that DDOM achieves results competitive with state-of-the-art baselines.