The complexity of admissibility in Omega-regular games

Romain Brenguier, Jean-François Raskin, Mathieu Sassolas
{"title":"The complexity of admissibility in Omega-regular games","authors":"Romain Brenguier, Jean-François Raskin, Mathieu Sassolas","doi":"10.1145/2603088.2603143","DOIUrl":null,"url":null,"abstract":"Iterated admissibility is a well-known and important concept in classical game theory, e.g. to determine rational behaviors in multi-player matrix games. As recently shown by Berwanger, this concept can be soundly extended to infinite games played on graphs with ω-regular objectives. In this paper, we study the algorithmic properties of this concept for such games. We settle the exact complexity of natural decision problems on the set of strategies that survive iterated elimination of dominated strategies. As a byproduct of our construction, we obtain automata which recognize all the possible outcomes of such strategies.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Iterated admissibility is a well-known and important concept in classical game theory, e.g. to determine rational behaviors in multi-player matrix games. As recently shown by Berwanger, this concept can be soundly extended to infinite games played on graphs with ω-regular objectives. In this paper, we study the algorithmic properties of this concept for such games. We settle the exact complexity of natural decision problems on the set of strategies that survive iterated elimination of dominated strategies. As a byproduct of our construction, we obtain automata which recognize all the possible outcomes of such strategies.
omega -常规游戏的可接受性复杂性
迭代可采性是经典博弈论中一个众所周知的重要概念,用于确定多人矩阵博弈中的理性行为。正如Berwanger最近所展示的,这个概念可以很好地扩展到在具有ω-规则目标的图上进行的无限博弈。在本文中,我们研究了这类博弈概念的算法性质。我们解决了自然决策问题的精确复杂性,即在劣势策略的迭代消除中幸存的策略集。作为我们构建的副产品,我们获得了能够识别这些策略的所有可能结果的自动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信