Machine learning inference of molecular dipole moment in liquid water

L. Knijff, Chao Zhang
{"title":"Machine learning inference of molecular dipole moment in liquid water","authors":"L. Knijff, Chao Zhang","doi":"10.1088/2632-2153/ac0123","DOIUrl":null,"url":null,"abstract":"Molecular dipole moment in liquid water is an intriguing property, partly due to the fact that there is no unique way to partition the total electron density into individual molecular contributions. The prevailing method to circumvent this problem is to use maximally localized Wannier functions, which perform a unitary transformation of the occupied molecular orbitals by minimizing the spread function of Boys. Here we revisit this problem using a data-driven approach satisfying two physical constraints, namely: i) The displacement of the atomic charges is proportional to the Berry phase polarization; ii) Each water molecule has a formal charge of zero. It turns out that the distribution of molecular dipole moments in liquid water inferred from latent variables is surprisingly similar to that obtained from maximally localized Wannier functions. Apart from putting a maximum-likelihood footnote to the established method, this work highlights the capability of graph convolution based charge models and the importance of physical constraints on improving the interpretability.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"9 1","pages":"03"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ac0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Molecular dipole moment in liquid water is an intriguing property, partly due to the fact that there is no unique way to partition the total electron density into individual molecular contributions. The prevailing method to circumvent this problem is to use maximally localized Wannier functions, which perform a unitary transformation of the occupied molecular orbitals by minimizing the spread function of Boys. Here we revisit this problem using a data-driven approach satisfying two physical constraints, namely: i) The displacement of the atomic charges is proportional to the Berry phase polarization; ii) Each water molecule has a formal charge of zero. It turns out that the distribution of molecular dipole moments in liquid water inferred from latent variables is surprisingly similar to that obtained from maximally localized Wannier functions. Apart from putting a maximum-likelihood footnote to the established method, this work highlights the capability of graph convolution based charge models and the importance of physical constraints on improving the interpretability.
液态水分子偶极矩的机器学习推理
液态水中的分子偶极矩是一个有趣的性质,部分原因是没有唯一的方法将总电子密度划分为单个分子的贡献。解决这一问题的普遍方法是使用最大定域万尼尔函数,该函数通过最小化男孩的扩散函数对已占分子轨道进行幺正变换。在这里,我们使用满足两个物理约束的数据驱动方法重新审视这个问题,即:i)原子电荷的位移与Berry相极化成正比;每个水分子的形式电荷为零。结果表明,从潜变量推断出的液态水分子偶极矩的分布与从最大定域万尼尔函数得到的分布惊人地相似。除了对已建立的方法进行最大似然注脚外,这项工作还强调了基于图卷积的电荷模型的能力以及物理约束对提高可解释性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信