Uncertain Gain and Time-Delay Control of 300-kW SOFC-GT

T. Emami, D. Tucker, J. Watkins
{"title":"Uncertain Gain and Time-Delay Control of 300-kW SOFC-GT","authors":"T. Emami, D. Tucker, J. Watkins","doi":"10.1115/power2021-64925","DOIUrl":null,"url":null,"abstract":"\n This paper presents a Proportional Integral Derivative (PID) controller design with the presence of an uncertain internal gain and additional time delay in the forward path of a 300 kW Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT). The outputs of the system are turbine speed and the fuel cell mass flow rate. A fixed set of proportional controller coefficients are determined to graphically develop an area of selection for the integral and derivative coefficients of the PID controller. The inputs to the power plant are the electric load and cold air valve. The decentralized controllers are applied to four sub-systems as a Single Input Single Output (SISO). The PID controller coefficients are selected from a singular matrix solution that stabilizes the system and satisfies the internal gain and time delay uncertainties. Two sub-systems are the transfer functions of the turbine speed over the electric load and the cold air valve. The other two sub-systems are the transfer functions of the fuel cell mass flow rate over the electric load and the cold air bypass valve. Multiple options for selecting PID controller coefficients are beneficial to the SOFC-GT plant due to the wide range of operations and internal uncertainty interactions. The specific internal time delay and gain margins increase the reliability and robustness of the SOFC-GT with multiple uncertain parameters.","PeriodicalId":8567,"journal":{"name":"ASME 2021 Power Conference","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2021-64925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Proportional Integral Derivative (PID) controller design with the presence of an uncertain internal gain and additional time delay in the forward path of a 300 kW Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT). The outputs of the system are turbine speed and the fuel cell mass flow rate. A fixed set of proportional controller coefficients are determined to graphically develop an area of selection for the integral and derivative coefficients of the PID controller. The inputs to the power plant are the electric load and cold air valve. The decentralized controllers are applied to four sub-systems as a Single Input Single Output (SISO). The PID controller coefficients are selected from a singular matrix solution that stabilizes the system and satisfies the internal gain and time delay uncertainties. Two sub-systems are the transfer functions of the turbine speed over the electric load and the cold air valve. The other two sub-systems are the transfer functions of the fuel cell mass flow rate over the electric load and the cold air bypass valve. Multiple options for selecting PID controller coefficients are beneficial to the SOFC-GT plant due to the wide range of operations and internal uncertainty interactions. The specific internal time delay and gain margins increase the reliability and robustness of the SOFC-GT with multiple uncertain parameters.
300kw SOFC-GT的不确定增益与时延控制
本文提出了一种300 kW固体氧化物燃料电池-燃气轮机(SOFC-GT)的比例积分导数(PID)控制器设计,该控制器存在不确定的内部增益和附加的时间延迟。该系统的输出是涡轮转速和燃料电池质量流量。确定了一组固定的比例控制器系数,以图形方式为PID控制器的积分系数和导数系数开辟了一个选择区域。电厂的输入是电力负荷和冷气阀。分散控制器作为单输入单输出(SISO)应用于四个子系统。PID控制器系数从奇异矩阵解中选择,以稳定系统并满足内部增益和时延的不确定性。两个子系统是汽轮机转速对电力负荷和冷空气阀的传递函数。另外两个子系统是燃料电池质量流率在电力负荷上的传递函数和冷空气旁通阀。由于广泛的操作范围和内部不确定性相互作用,选择PID控制器系数的多个选项对SOFC-GT装置是有益的。特定的内时延和增益余量提高了多不确定参数SOFC-GT的可靠性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信