Towards Visualization Recommendation Systems

Manasi Vartak, Silu Huang, Tarique Siddiqui, S. Madden, Aditya G. Parameswaran
{"title":"Towards Visualization Recommendation Systems","authors":"Manasi Vartak, Silu Huang, Tarique Siddiqui, S. Madden, Aditya G. Parameswaran","doi":"10.1145/3092931.3092937","DOIUrl":null,"url":null,"abstract":"Data visualization is often used as the first step while performing a variety of analytical tasks. With the advent of large, high-dimensional datasets and significant interest in data science, there is a need for tools that can support rapid visual analysis. In this paper we describe our vision for a new class of visualization systems, namely visualization recommendation systems, that can automatically identify and interactively recommend visualizations relevant to an analytical task. We detail the key requirements and design considerations for a visualization recommendation system. We also identify a number of challenges in realizing this vision and describe some approaches to address them.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"111 1","pages":"34-39"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3092931.3092937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

Data visualization is often used as the first step while performing a variety of analytical tasks. With the advent of large, high-dimensional datasets and significant interest in data science, there is a need for tools that can support rapid visual analysis. In this paper we describe our vision for a new class of visualization systems, namely visualization recommendation systems, that can automatically identify and interactively recommend visualizations relevant to an analytical task. We detail the key requirements and design considerations for a visualization recommendation system. We also identify a number of challenges in realizing this vision and describe some approaches to address them.
迈向可视化推荐系统
数据可视化通常被用作执行各种分析任务的第一步。随着大型、高维数据集的出现以及人们对数据科学的极大兴趣,人们需要能够支持快速可视化分析的工具。在本文中,我们描述了我们对一类新的可视化系统的愿景,即可视化推荐系统,它可以自动识别并交互式地推荐与分析任务相关的可视化。我们详细介绍了可视化推荐系统的关键要求和设计注意事项。我们还指出了实现这一愿景的一些挑战,并描述了解决这些挑战的一些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信