Rapid Deployment Indoor Localization without Prior Human Participation

Han Xu, Zimu Zhou, Longfei Shangguan
{"title":"Rapid Deployment Indoor Localization without Prior Human Participation","authors":"Han Xu, Zimu Zhou, Longfei Shangguan","doi":"10.1109/LCN.2016.89","DOIUrl":null,"url":null,"abstract":"In this work, we propose RAD, a RApid Deployment localization framework without human sampling. The basic idea of RAD is to automatically generate a fingerprint database through space partition, of which each cell is fingerprinted by its maximum influence APs. Based on this robust location indicator, fine-grained localization can be achieved by a discretized particle filter utilizing sensor data fusion. We devise techniques for CIVD-based field division, graph-based particle filter, EM-based individual character learning, and build a prototype that runs on commodity devices. Extensive experiments show that RAD provides a comparable performance to the state-of-the-art RSS-based methods while relieving it of prior human participation.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"29 1","pages":"547-550"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose RAD, a RApid Deployment localization framework without human sampling. The basic idea of RAD is to automatically generate a fingerprint database through space partition, of which each cell is fingerprinted by its maximum influence APs. Based on this robust location indicator, fine-grained localization can be achieved by a discretized particle filter utilizing sensor data fusion. We devise techniques for CIVD-based field division, graph-based particle filter, EM-based individual character learning, and build a prototype that runs on commodity devices. Extensive experiments show that RAD provides a comparable performance to the state-of-the-art RSS-based methods while relieving it of prior human participation.
无需事先人工参与的快速部署室内定位
在这项工作中,我们提出了RAD,一种不需要人工采样的快速部署定位框架。RAD的基本思想是通过空间分区自动生成指纹数据库,每个单元格按其最大影响ap进行指纹识别。基于该鲁棒定位指标,利用传感器数据融合的离散化粒子滤波实现细粒度定位。我们设计了基于civd的领域划分、基于图形的粒子过滤、基于em的个人字符学习等技术,并构建了在商品设备上运行的原型。大量的实验表明,RAD提供了与最先进的基于rss的方法相当的性能,同时减轻了先前的人类参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信