{"title":"Some Complexity Results for the k-Splittable Flow Minimizing Congestion Problem","authors":"Chengwen Jiao, Q. Feng, Weichun Bu","doi":"10.4236/CN.2018.101001","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly consider the complexity of the k-splittable flow minimizing congestion problem. We give some complexity results. For the k-splittable flow problem, the existence of a feasible solution is strongly NP-hard. When the number of the source nodes is an input, for the uniformly exactly k-splittable flow problem, obtaining an approximation algorithm with performance ratio better than (√5+1)/2 is NP-hard. When k is an input, for single commodity k-splittable flow problem, obtaining an algorithm with performance ratio better than is NP-hard. In the last of the paper, we study the relationship of minimizing congestion and minimizing number of rounds in the k-splittable flow problem. The smaller the congestion is, the smaller the number of rounds.","PeriodicalId":91826,"journal":{"name":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","volume":"88 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Conference on Communications and Network Security. IEEE Conference on Communications and Network Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/CN.2018.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we mainly consider the complexity of the k-splittable flow minimizing congestion problem. We give some complexity results. For the k-splittable flow problem, the existence of a feasible solution is strongly NP-hard. When the number of the source nodes is an input, for the uniformly exactly k-splittable flow problem, obtaining an approximation algorithm with performance ratio better than (√5+1)/2 is NP-hard. When k is an input, for single commodity k-splittable flow problem, obtaining an algorithm with performance ratio better than is NP-hard. In the last of the paper, we study the relationship of minimizing congestion and minimizing number of rounds in the k-splittable flow problem. The smaller the congestion is, the smaller the number of rounds.