Peskun–Tierney ordering for Markovian Monte Carlo: Beyond the reversible scenario

C. Andrieu, Samuel Livingstone
{"title":"Peskun–Tierney ordering for Markovian Monte Carlo: Beyond the reversible scenario","authors":"C. Andrieu, Samuel Livingstone","doi":"10.1214/20-aos2008","DOIUrl":null,"url":null,"abstract":"Historically time-reversibility of the transitions or processes underpinning Markov chain Monte Carlo methods (MCMC) has played a key role in their development, while the self-adjointness of associated operators together with the use of classical functional analysis techniques on Hilbert spaces have led to powerful and practically successful tools to characterise and compare their performance. Similar results for algorithms relying on nonreversible Markov processes are scarce. We show that for a type of nonreversible Monte Carlo Markov chains and processes, of current or renewed interest in the physics and statistical literatures, it is possible to develop comparison results which closely mirror those available in the reversible scenario. We show that these results shed light on earlier literature, proving some conjectures and strengthening some earlier results.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-aos2008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Historically time-reversibility of the transitions or processes underpinning Markov chain Monte Carlo methods (MCMC) has played a key role in their development, while the self-adjointness of associated operators together with the use of classical functional analysis techniques on Hilbert spaces have led to powerful and practically successful tools to characterise and compare their performance. Similar results for algorithms relying on nonreversible Markov processes are scarce. We show that for a type of nonreversible Monte Carlo Markov chains and processes, of current or renewed interest in the physics and statistical literatures, it is possible to develop comparison results which closely mirror those available in the reversible scenario. We show that these results shed light on earlier literature, proving some conjectures and strengthening some earlier results.
马尔可夫蒙特卡洛的Peskun-Tierney排序:超越可逆情形
历史上,支持马尔可夫链蒙特卡罗方法(MCMC)的过渡或过程的时间可逆性在它们的发展中发挥了关键作用,而相关算子的自伴随性以及希尔伯特空间上经典泛函分析技术的使用已经导致了强大且实际上成功的工具来表征和比较它们的性能。依赖于不可逆马尔可夫过程的算法的类似结果很少。我们表明,对于一类不可逆的蒙特卡罗马尔可夫链和过程,当前或在物理和统计文献中重新产生兴趣,有可能开发出与可逆场景中可用的结果密切相关的比较结果。我们表明,这些结果阐明了早期的文献,证明了一些猜想,并加强了一些早期的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信