Studying the effectiveness of deep active learning in software defect prediction

Q2 Computer Science
Farid Feyzi, Arman Daneshdoost
{"title":"Studying the effectiveness of deep active learning in software defect prediction","authors":"Farid Feyzi, Arman Daneshdoost","doi":"10.1080/1206212X.2023.2252117","DOIUrl":null,"url":null,"abstract":"Accurate prediction of defective software modules is of great importance for prioritizing quality assurance efforts, reasonably allocating testing resources, reducing costs and improving software quality. Several studies have used machine learning to predict software defects. However, complex structures and imbalanced class distributions in software defect data make learning an effective defect prediction model challenging. In this article, two deep learning-based defect prediction models using static code metrics are proposed. In order to enhance the learning process and improve the performance of the proposed models, pool-based active learning is employed. In this regard, the possibility of using active learning to mitigate the need for a large amount of labeled data in the process of building deep learning models is investigated. To deal with imbalanced distribution of software modules between defective and non-defective classes, Near-Miss under-sampling and KNN, with different number of neighbors, are used. The reason for choosing them is their good performance in binary classification problems. Experiments are performed on two well-known, publicly available datasets, GitHub Bug Dataset and public Unified Bug Dataset for java projects. The evaluation results reveal the effectiveness of our proposed models in comparison to the traditional machine learning algorithms. In the conducted investigations on the Unified Bug Dataset, at the file level, the value of F-measure and AUC criteria have improved by 13 and 11 percent, respectively and at the class level, the values have improved by 14 and 11 percent, respectively.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"16 1","pages":"534 - 552"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2252117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of defective software modules is of great importance for prioritizing quality assurance efforts, reasonably allocating testing resources, reducing costs and improving software quality. Several studies have used machine learning to predict software defects. However, complex structures and imbalanced class distributions in software defect data make learning an effective defect prediction model challenging. In this article, two deep learning-based defect prediction models using static code metrics are proposed. In order to enhance the learning process and improve the performance of the proposed models, pool-based active learning is employed. In this regard, the possibility of using active learning to mitigate the need for a large amount of labeled data in the process of building deep learning models is investigated. To deal with imbalanced distribution of software modules between defective and non-defective classes, Near-Miss under-sampling and KNN, with different number of neighbors, are used. The reason for choosing them is their good performance in binary classification problems. Experiments are performed on two well-known, publicly available datasets, GitHub Bug Dataset and public Unified Bug Dataset for java projects. The evaluation results reveal the effectiveness of our proposed models in comparison to the traditional machine learning algorithms. In the conducted investigations on the Unified Bug Dataset, at the file level, the value of F-measure and AUC criteria have improved by 13 and 11 percent, respectively and at the class level, the values have improved by 14 and 11 percent, respectively.
研究了深度主动学习在软件缺陷预测中的有效性
准确预测有缺陷的软件模块对于确定质量保证工作的优先级、合理分配测试资源、降低成本和提高软件质量具有重要意义。一些研究已经使用机器学习来预测软件缺陷。然而,软件缺陷数据中复杂的结构和不平衡的类分布给学习有效的缺陷预测模型带来了挑战。本文提出了两个基于深度学习的基于静态代码度量的缺陷预测模型。为了提高模型的学习过程和性能,采用了基于池的主动学习方法。在这方面,研究了在构建深度学习模型的过程中使用主动学习来减少对大量标记数据的需求的可能性。为了解决软件模块在缺陷类和非缺陷类之间分布不平衡的问题,采用了邻数不同的欠采样和KNN。选择它们的原因是它们在二值分类问题中的良好性能。实验是在两个众所周知的、公开可用的数据集上进行的,GitHub Bug Dataset和java项目的公共统一Bug Dataset。评估结果表明,与传统的机器学习算法相比,我们提出的模型是有效的。在对统一Bug数据集进行的调查中,在文件级别,F-measure和AUC标准的值分别提高了13%和11%,在类级别,值分别提高了14%和11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信