Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks

Yiyou Sun, Sathya Ravi, Vikas Singh
{"title":"Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks","authors":"Yiyou Sun, Sathya Ravi, Vikas Singh","doi":"10.1109/ICCV.2019.00504","DOIUrl":null,"url":null,"abstract":"There is a growing interest in strategies that can help us understand or interpret neural networks -- that is, not merely provide a prediction, but also offer additional context explaining why and how. While many current methods offer tools to perform this analysis for a given (trained) network post-hoc, recent results (especially on capsule networks) suggest that when classes map to a few high level ``concepts'' in the preceding layers of the network, the behavior of the network is easier to interpret or explain. Such training may be accomplished via dynamic/EM routing where the network ``routes'' for individual classes (or subsets of images) are dynamic and involve few nodes even if the full network may not be sparse. In this paper, we show how a simple modification of the SGD scheme can help provide dynamic/EM routing type behavior in convolutional neural networks. Through extensive experiments, we evaluate the effect of this idea for interpretability where we obtain promising results, while also showing that no compromise in attainable accuracy is involved. Further, we show that the minor modification is seemingly ad-hoc, the new algorithm can be analyzed by an approximate method which provably matches known rates for SGD.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"18 1","pages":"4937-4946"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

There is a growing interest in strategies that can help us understand or interpret neural networks -- that is, not merely provide a prediction, but also offer additional context explaining why and how. While many current methods offer tools to perform this analysis for a given (trained) network post-hoc, recent results (especially on capsule networks) suggest that when classes map to a few high level ``concepts'' in the preceding layers of the network, the behavior of the network is easier to interpret or explain. Such training may be accomplished via dynamic/EM routing where the network ``routes'' for individual classes (or subsets of images) are dynamic and involve few nodes even if the full network may not be sparse. In this paper, we show how a simple modification of the SGD scheme can help provide dynamic/EM routing type behavior in convolutional neural networks. Through extensive experiments, we evaluate the effect of this idea for interpretability where we obtain promising results, while also showing that no compromise in attainable accuracy is involved. Further, we show that the minor modification is seemingly ad-hoc, the new algorithm can be analyzed by an approximate method which provably matches known rates for SGD.
自适应激活阈值:卷积神经网络中可解释性的动态路由类型行为
人们对能够帮助我们理解或解释神经网络的策略越来越感兴趣——也就是说,不仅提供预测,还提供解释原因和方式的额外背景。虽然许多当前的方法提供了工具来对给定的(训练过的)网络执行这种分析,但最近的结果(特别是在胶囊网络上)表明,当类映射到网络前几层中的一些高级“概念”时,网络的行为更容易解释或解释。这种训练可以通过动态/EM路由完成,其中单个类(或图像子集)的网络“路由”是动态的,即使整个网络可能不是稀疏的,也涉及很少的节点。在本文中,我们展示了SGD方案的简单修改如何有助于在卷积神经网络中提供动态/EM路由类型行为。通过广泛的实验,我们评估了这一想法对可解释性的影响,我们获得了有希望的结果,同时也表明在可达到的准确性方面没有妥协。此外,我们表明,微小的修改似乎是临时的,新算法可以用一种近似方法来分析,该方法可以证明与已知的SGD速率相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信