Shallow transient electromagnetic method application for groundwater exploration: case study from Greece

M. Sharlov, I. Buddo, Alexander Pisarnitskiy, N. Misurkeeva, I. Shelohov
{"title":"Shallow transient electromagnetic method application for groundwater exploration: case study from Greece","authors":"M. Sharlov, I. Buddo, Alexander Pisarnitskiy, N. Misurkeeva, I. Shelohov","doi":"10.1080/22020586.2019.12073044","DOIUrl":null,"url":null,"abstract":"Summary The transient electromagnetic method (TEM) survey was carried out within one of the private house area to allocate the fresh water reservoirs in Greece. There are two challenges that make the problem complex. The first is noisy settings for geophysical survey: populated area with power lines, pipes, houses etc. The second challenge is uncertainties with water-bearing reservoirs. According to geological settings and water-bearing reservoirs location, geophysical survey had to maintain penetration depth up to 250-300 m. For this task DC (direct current) methods are not applicable whereas induction electromagnetic sounding like Transient electromagnetic method (TEM) in the near field zone can show superior results. Therefore TEM survey was carried out. To ensure the high quality of TEM data the special algorithms of electromagnetic noise attenuation were applied. From TEM results it was found, that at a depth of about 180–280 m in the southeastern part of the study area, one can expect the presence of fresh water, and the resistance values are 80 Ω·m.","PeriodicalId":8502,"journal":{"name":"ASEG Extended Abstracts","volume":"68 1","pages":"1 - 5"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEG Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22020586.2019.12073044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Summary The transient electromagnetic method (TEM) survey was carried out within one of the private house area to allocate the fresh water reservoirs in Greece. There are two challenges that make the problem complex. The first is noisy settings for geophysical survey: populated area with power lines, pipes, houses etc. The second challenge is uncertainties with water-bearing reservoirs. According to geological settings and water-bearing reservoirs location, geophysical survey had to maintain penetration depth up to 250-300 m. For this task DC (direct current) methods are not applicable whereas induction electromagnetic sounding like Transient electromagnetic method (TEM) in the near field zone can show superior results. Therefore TEM survey was carried out. To ensure the high quality of TEM data the special algorithms of electromagnetic noise attenuation were applied. From TEM results it was found, that at a depth of about 180–280 m in the southeastern part of the study area, one can expect the presence of fresh water, and the resistance values are 80 Ω·m.
浅层瞬变电磁法在地下水勘探中的应用:以希腊为例
在希腊的一个私人住宅区域内进行了瞬变电磁法(TEM)调查,以分配淡水水库。有两个挑战使问题变得复杂。第一种是地球物理调查的嘈杂环境:有电线、管道、房屋等的人口稠密地区。第二个挑战是含水油藏的不确定性。根据地质环境和含水油藏的位置,地球物理测量必须保持250-300米的穿透深度。对于这项任务,直流(直流)方法是不适用的,而感应电磁测深,如瞬变电磁法(TEM)在近场区域可以显示更好的结果。因此进行了透射电镜调查。为了保证瞬变电磁法数据的高质量,采用了特殊的电磁噪声衰减算法。TEM结果表明,在研究区东南部约180 ~ 280 m深度处,可预期存在淡水,电阻值为80 Ω·m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信