{"title":"Instantaneous Time Course of the Autonomic Cardiovascular and Respiratory Response of Healthy Subjects to Hypoglycemic Stimulus","authors":"S. Carrasco-Sosa, A. Guillén-Mandujano","doi":"10.23919/CinC49843.2019.9005662","DOIUrl":null,"url":null,"abstract":"In 13 healthy subjects we assessed the effect of hypoglycemia (HG) provoked by insulin on: R-R intervals (RR), systolic pressure (SP), diastolic pressure (DP), pulse pressure (PP), respiratory frequency (RF) and tidal volume (V<inf>T</inf>) 5-min time series; the instantaneous time courses of their low-frequency (LF<inf>RR</inf>, LF<inf>SP</inf>, LF<inf>DP</inf>, LF<inf>PP</inf>), high-frequency (HF<inf>RR</inf>, HF<inf>Res</inf>) powers and their respective central frequencies (cfLF<inf>RR</inf>, cfLF<inf>SP</inf>, cfLF<inf>DP</inf>, cfLF<inf>PP</inf>), computed by a time-frequency distribution; instantaneous baroreflex (BRS) and respiratory sinus arrhythmia sensitivities (RSAS), obtained by alpha index, and their coherences (cBRS and cRSAS) by cross time-frequency analysis. Peak HG (2.7±0.3 mmol/l) induced: 1) decreases (p<0.03) in five 1-min epoch means (EM) of HF<inf>RR</inf>, LF<inf>RR</inf>, BRS and RSAS dynamics, three EM of CFLFPP and cBRS, two EM of CFLFRR and CFLFSP; 2) increases (p<0.02) in five EM of SP, DP, PP, V<inf>T</inf> and RF, three EM of HF<inf>Res</inf>, two EM of LF<inf>SP</inf> and LF<inf>DP</inf>, one EM of LF<inf>PP</inf>; 3) no change in <inf>CF</inf>LF<inf>DP</inf>, RR and cRSAS. In healthy subjects, insulin-provoked HG elicits changes in the fluctuating time courses of all measures studied, integrating a counterregulatory response of autonomic control mechanisms and vagal depression associated with sympathetic, cardiovascular and respiratory activation.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"14 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In 13 healthy subjects we assessed the effect of hypoglycemia (HG) provoked by insulin on: R-R intervals (RR), systolic pressure (SP), diastolic pressure (DP), pulse pressure (PP), respiratory frequency (RF) and tidal volume (VT) 5-min time series; the instantaneous time courses of their low-frequency (LFRR, LFSP, LFDP, LFPP), high-frequency (HFRR, HFRes) powers and their respective central frequencies (cfLFRR, cfLFSP, cfLFDP, cfLFPP), computed by a time-frequency distribution; instantaneous baroreflex (BRS) and respiratory sinus arrhythmia sensitivities (RSAS), obtained by alpha index, and their coherences (cBRS and cRSAS) by cross time-frequency analysis. Peak HG (2.7±0.3 mmol/l) induced: 1) decreases (p<0.03) in five 1-min epoch means (EM) of HFRR, LFRR, BRS and RSAS dynamics, three EM of CFLFPP and cBRS, two EM of CFLFRR and CFLFSP; 2) increases (p<0.02) in five EM of SP, DP, PP, VT and RF, three EM of HFRes, two EM of LFSP and LFDP, one EM of LFPP; 3) no change in CFLFDP, RR and cRSAS. In healthy subjects, insulin-provoked HG elicits changes in the fluctuating time courses of all measures studied, integrating a counterregulatory response of autonomic control mechanisms and vagal depression associated with sympathetic, cardiovascular and respiratory activation.