E. Boellaard , R.J. Vreeburg, O.L.J. Gijzeman, J.W. Geus
{"title":"The interaction of carbon monoxide with nickel—iron alloys. A comparison between single crystal surfaces and supported catalysts","authors":"E. Boellaard , R.J. Vreeburg, O.L.J. Gijzeman, J.W. Geus","doi":"10.1016/0304-5102(94)00081-6","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction of carbon monoxide with nickel—iron alloys is studied on Ni(111)-Fe surfaces by means of ellipsometry and Auger electron spectroscopy, and by means of infrared spectroscopy on γ-Al<sub>2</sub>O<sub>3</sub>-supported Ni<sub><em>x</em></sub>Fe catalysts. The nickel-to-iron ratio of the alloy strongly affects the interaction with CO. On alloys with an iron atom fraction of 0.3 or less the adsorption of CO is molecular, whereas at fractions higher than 0.4 it is initially dissociative. Surfaces contaminated with carbon and oxygen exhibit a lower heat of adsorption. The presence of pre-adsorbed hydrogen lowers the amount of CO which can be adsorbed on Ni(111)-Fe surfaces, whereas on supported catalysts it leads to the formation of formate species already at room temperature.</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"92 3","pages":"Pages 299-310"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)00081-6","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294000816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 16
Abstract
The interaction of carbon monoxide with nickel—iron alloys is studied on Ni(111)-Fe surfaces by means of ellipsometry and Auger electron spectroscopy, and by means of infrared spectroscopy on γ-Al2O3-supported NixFe catalysts. The nickel-to-iron ratio of the alloy strongly affects the interaction with CO. On alloys with an iron atom fraction of 0.3 or less the adsorption of CO is molecular, whereas at fractions higher than 0.4 it is initially dissociative. Surfaces contaminated with carbon and oxygen exhibit a lower heat of adsorption. The presence of pre-adsorbed hydrogen lowers the amount of CO which can be adsorbed on Ni(111)-Fe surfaces, whereas on supported catalysts it leads to the formation of formate species already at room temperature.
期刊介绍:
Journal of Molecular Catalysis (China) is a bimonthly journal, founded in 1987. It is a bimonthly journal, founded in 1987, sponsored by Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, under the supervision of Chinese Academy of Sciences, and published by Science Publishing House, which is a scholarly journal openly circulated both at home and abroad. The journal mainly reports the latest progress and research results on molecular catalysis. It contains academic papers, research briefs, research reports and progress reviews. The content focuses on coordination catalysis, enzyme catalysis, light-ribbed catalysis, stereochemistry in catalysis, catalytic reaction mechanism and kinetics, the study of catalyst surface states and the application of quantum chemistry in catalysis. We also provide contributions on the activation, deactivation and regeneration of homogeneous catalysts, solidified homogeneous catalysts and solidified enzyme catalysts in industrial catalytic processes, as well as on the optimisation and characterisation of catalysts for new catalytic processes.
The main target readers are scientists and postgraduates working in catalysis in research institutes, industrial and mining enterprises, as well as teachers and students of chemistry and chemical engineering departments in colleges and universities. Contributions from related professionals are welcome.