{"title":"On The Feasibility of Polar Code as Channel Code Candidate for the 5G-IoT Scenarios","authors":"Arti Sharma, M. Salim","doi":"10.14257/IJFGCN.2018.11.3.02","DOIUrl":null,"url":null,"abstract":"5G is on the horizon and internet of things (IoT) is anticipated as an eminent scenario for the 5G network paradigm. The emerging 5G-IoT scenarios are required to potentially support and encourage the massive number of devices of low cost, low latency, long battery life with high reliability. IoT is envisioned to have billions of simultaneous connections over next few years that will completely change the characteristics of mobile network. M2M communication is prime enabling technology of the IoT which is much related to the 5G’s Machine type Communication (MTC). Therefore, 5G’s machine type Communication between massive numbers of devices with mission critical services is become very popular now days and named as 5G-IoT scenario. Channel Coding for the 5G-IoT scenarios is facing novel challenges as to support its various requirements on latency, reliability, scalability and energy consumption. Hence, an FEC code needs to endorse diverse requirements of code lengths and rates, as well as high throughput with low decoding complexity. This paper compares various candidate channel coding methods for 5G-IoT scenario. Polar code is believed as dominant advancement in channel coding theory and guarantees for apical performance. And hence, polar code is considered as promising candidate for the 5G-IoT scenario. This paper put an emphasis on the suitability of polar codes for 5G-IoT scenario.","PeriodicalId":45234,"journal":{"name":"International Journal of Future Generation Communication and Networking","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Future Generation Communication and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJFGCN.2018.11.3.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
5G is on the horizon and internet of things (IoT) is anticipated as an eminent scenario for the 5G network paradigm. The emerging 5G-IoT scenarios are required to potentially support and encourage the massive number of devices of low cost, low latency, long battery life with high reliability. IoT is envisioned to have billions of simultaneous connections over next few years that will completely change the characteristics of mobile network. M2M communication is prime enabling technology of the IoT which is much related to the 5G’s Machine type Communication (MTC). Therefore, 5G’s machine type Communication between massive numbers of devices with mission critical services is become very popular now days and named as 5G-IoT scenario. Channel Coding for the 5G-IoT scenarios is facing novel challenges as to support its various requirements on latency, reliability, scalability and energy consumption. Hence, an FEC code needs to endorse diverse requirements of code lengths and rates, as well as high throughput with low decoding complexity. This paper compares various candidate channel coding methods for 5G-IoT scenario. Polar code is believed as dominant advancement in channel coding theory and guarantees for apical performance. And hence, polar code is considered as promising candidate for the 5G-IoT scenario. This paper put an emphasis on the suitability of polar codes for 5G-IoT scenario.
期刊介绍:
The topics covered by IJFGCN include the following:- -Communication Basic and Infrastructure: *Algorithms, Architecture, and Infrastructures *Communication protocols *Communication Systems *Telecommunications *Transmission TechniquesEtc. -Networks Basic and Management: *Network Management Techniques *Network Modeling and Simulation *Network Systems and Devices *Networks Security, Encryption and Cryptography *Wireless Networks, Ad-Hoc and Sensor Networks *Etc. -Multimedia Application: *Digital Rights Management *Documents Monetization and Interpretation *Management and Diffusion of Multimedia Applications *Multimedia Data Base *Etc. -Image, Video, Signal and Information Processing: *Analysis and Processing *Compression and Coding *Information Fusion *Rationing Methods and Data mining *Etc.