Robust and efficient image alignment with spatially varying illumination models

S. Lai, M. Fang
{"title":"Robust and efficient image alignment with spatially varying illumination models","authors":"S. Lai, M. Fang","doi":"10.1109/CVPR.1999.784625","DOIUrl":null,"url":null,"abstract":"Image alignment is one of the most important task in computer vision. In this paper, we explicitly model spatial illumination variations by low-order polynomial functions in an energy minimization framework. Data constraints for the alignment and illumination parameters are derived from the first-order Taylor approximation of a generalized brightness assumption. We formulate the parameter estimation problem in a weighted least-square framework by using the influence function from robust estimation to derive an iterative re-weighted least-square algorithm. A dynamic weighting scheme, which combines the factors from influence function, consistency of image gradients and nonlinear image intensity sensing, is used to improve the robustness of the image matching. In addition, a constraint sampling scheme and an estimation-warping alternative strategy are used in the proposed algorithm to improve its efficiency and accuracy. Experimental results are shown to demonstrate the robustness, efficiency and accuracy of the algorithm.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"14 1","pages":"167-172 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Image alignment is one of the most important task in computer vision. In this paper, we explicitly model spatial illumination variations by low-order polynomial functions in an energy minimization framework. Data constraints for the alignment and illumination parameters are derived from the first-order Taylor approximation of a generalized brightness assumption. We formulate the parameter estimation problem in a weighted least-square framework by using the influence function from robust estimation to derive an iterative re-weighted least-square algorithm. A dynamic weighting scheme, which combines the factors from influence function, consistency of image gradients and nonlinear image intensity sensing, is used to improve the robustness of the image matching. In addition, a constraint sampling scheme and an estimation-warping alternative strategy are used in the proposed algorithm to improve its efficiency and accuracy. Experimental results are shown to demonstrate the robustness, efficiency and accuracy of the algorithm.
鲁棒和有效的图像对齐与空间变化的照明模型
图像对齐是计算机视觉中的重要任务之一。本文利用能量最小化框架下的低阶多项式函数对空间光照变化进行了显式建模。从广义亮度假设的一阶泰勒近似推导出对准和照明参数的数据约束。在加权最小二乘框架下,利用鲁棒估计的影响函数,推导出一种迭代的重加权最小二乘算法。结合影响函数、图像梯度一致性和非线性图像强度感知等因素,采用动态加权方案提高图像匹配的鲁棒性。此外,为了提高算法的效率和精度,该算法还采用了约束采样方案和估计-翘曲替代策略。实验结果证明了该算法的鲁棒性、有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信