NUMERICAL SOLUTION OF AN INTEGRO-DIFFERENTIAL EQUATION ARISING IN OSCILLATING MAGNETIC FIELDS

IF 0.3 Q4 MATHEMATICS, APPLIED
K. Parand, M. Delkhosh
{"title":"NUMERICAL SOLUTION OF AN INTEGRO-DIFFERENTIAL EQUATION ARISING IN OSCILLATING MAGNETIC FIELDS","authors":"K. Parand, M. Delkhosh","doi":"10.12941/JKSIAM.2016.20.261","DOIUrl":null,"url":null,"abstract":"In this paper, an integro-differential equation which arises in oscillating magnetic fields is studied. The generalized fractional order Chebyshev orthogonal functions (GFCF) collocation method used for solving this integral equation. The GFCF collocation method can be used in applied physics, applied mathematics, and engineering applications. The results of applying this procedure to the integro-differential equation with time-periodic coefficients show the high accuracy, simplicity, and efficiency of this method. The present method is converging and the error decreases with increasing collocation points.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"11 1","pages":"261-275"},"PeriodicalIF":0.3000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2016.20.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, an integro-differential equation which arises in oscillating magnetic fields is studied. The generalized fractional order Chebyshev orthogonal functions (GFCF) collocation method used for solving this integral equation. The GFCF collocation method can be used in applied physics, applied mathematics, and engineering applications. The results of applying this procedure to the integro-differential equation with time-periodic coefficients show the high accuracy, simplicity, and efficiency of this method. The present method is converging and the error decreases with increasing collocation points.
振荡磁场中积分-微分方程的数值解
本文研究了振荡磁场中出现的一类积分-微分方程。采用广义分数阶切比雪夫正交函数(GFCF)配点法求解该积分方程。GFCF配置方法可用于应用物理、应用数学和工程应用。将该方法应用于具有时间周期系数的积分-微分方程的结果表明,该方法具有较高的精度、简单性和高效性。该方法具有收敛性,且误差随搭配点的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信