QuantumHammer

K. Mus, Saad Islam, B. Sunar
{"title":"QuantumHammer","authors":"K. Mus, Saad Islam, B. Sunar","doi":"10.1145/3372297.3417272","DOIUrl":null,"url":null,"abstract":"Post-quantum schemes are expected to replace existing public-key schemes within a decade in billions of devices. To facilitate the transition, the US National Institute for Standards and Technology (NIST) is running a standardization process. Multivariate signatures is one of the main categories in NIST's post-quantum cryptography competition. Among the four candidates in this category, the LUOV and Rainbow schemes are based on the Oil and Vinegar scheme, first introduced in 1997 which has withstood over two decades of cryptanalysis. Beyond mathematical security and efficiency, security against side-channel attacks is a major concern in the competition. The current sentiment is that post-quantum schemes may be more resistant to fault-injection attacks due to their large key sizes and the lack of algebraic structure. We show that this is not true. We introduce a novel hybrid attack, QuantumHammer, and demonstrate it on the constant-time implementation of LUOV currently in Round 2 of the NIST post-quantum competition. The QuantumHammer attack is a combination of two attacks, a bit-tracing attack enabled via Rowhammer fault injection and a divide and conquer attack that uses bit-tracing as an oracle. Using bit-tracing, an attacker with access to faulty signatures collected using Rowhammer attack, can recover secret key bits albeit slowly. We employ a divide and conquer attack which exploits the structure in the key generation part of LUOV and solves the system of equations for the secret key more efficiently with few key bits recovered via bit-tracing. We have demonstrated the first successful in-the-wild attack on LUOV recovering all 11K key bits with less than 4 hours of an active Rowhammer attack. The post-processing part is highly parallel and thus can be trivially sped up using modest resources. QuantumHammer does not make any unrealistic assumptions, only requires software co-location (no physical access), and therefore can be used to target shared cloud servers or in other sandboxed environments.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Post-quantum schemes are expected to replace existing public-key schemes within a decade in billions of devices. To facilitate the transition, the US National Institute for Standards and Technology (NIST) is running a standardization process. Multivariate signatures is one of the main categories in NIST's post-quantum cryptography competition. Among the four candidates in this category, the LUOV and Rainbow schemes are based on the Oil and Vinegar scheme, first introduced in 1997 which has withstood over two decades of cryptanalysis. Beyond mathematical security and efficiency, security against side-channel attacks is a major concern in the competition. The current sentiment is that post-quantum schemes may be more resistant to fault-injection attacks due to their large key sizes and the lack of algebraic structure. We show that this is not true. We introduce a novel hybrid attack, QuantumHammer, and demonstrate it on the constant-time implementation of LUOV currently in Round 2 of the NIST post-quantum competition. The QuantumHammer attack is a combination of two attacks, a bit-tracing attack enabled via Rowhammer fault injection and a divide and conquer attack that uses bit-tracing as an oracle. Using bit-tracing, an attacker with access to faulty signatures collected using Rowhammer attack, can recover secret key bits albeit slowly. We employ a divide and conquer attack which exploits the structure in the key generation part of LUOV and solves the system of equations for the secret key more efficiently with few key bits recovered via bit-tracing. We have demonstrated the first successful in-the-wild attack on LUOV recovering all 11K key bits with less than 4 hours of an active Rowhammer attack. The post-processing part is highly parallel and thus can be trivially sped up using modest resources. QuantumHammer does not make any unrealistic assumptions, only requires software co-location (no physical access), and therefore can be used to target shared cloud servers or in other sandboxed environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信