Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging

R. Vasudevan, K. Kelley, E. Eliseev, S. Jesse, H. Funakubo, A. Morozovska, Sergei V. Kalinin
{"title":"Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging","authors":"R. Vasudevan, K. Kelley, E. Eliseev, S. Jesse, H. Funakubo, A. Morozovska, Sergei V. Kalinin","doi":"10.1063/5.0005323","DOIUrl":null,"url":null,"abstract":"The universal tendency in scanning probe microscopy (SPM) over the last two decades is to transition from simple 2D imaging to complex detection and spectroscopic imaging modes. The emergence of complex SPM engines brings forth the challenge of reliable data interpretation, i.e. conversion from detected signal to descriptors specific to tip-surface interactions and subsequently to materials properties. Here, we implemented a Bayesian inference approach for the analysis of the image formation mechanisms in band excitation (BE) SPM. Compared to the point estimates in classical functional fit approaches, Bayesian inference allows for the incorporation of extant knowledge of materials and probe behavior in the form of corresponding prior distribution and return the information on the material functionality in the form of readily interpretable posterior distributions. We note that in application of Bayesian methods, special care should be made for proper setting on the problem as model selection vs. establishing practical parameter equivalence. We further explore the non-linear mechanical behaviors at topological defects in a classical ferroelectric material, PbTiO3. We observe the non-trivial evolution of Duffing resonance frequency and the nonlinearity of the sample surface, suggesting the presence of the hidden elements of domain structure. These observations suggest that the spectrum of anomalous behaviors at the ferroelectric domain walls can be significantly broader than previously believed and can extend to non-conventional mechanical properties in addition to static and microwave conductance.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0005323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The universal tendency in scanning probe microscopy (SPM) over the last two decades is to transition from simple 2D imaging to complex detection and spectroscopic imaging modes. The emergence of complex SPM engines brings forth the challenge of reliable data interpretation, i.e. conversion from detected signal to descriptors specific to tip-surface interactions and subsequently to materials properties. Here, we implemented a Bayesian inference approach for the analysis of the image formation mechanisms in band excitation (BE) SPM. Compared to the point estimates in classical functional fit approaches, Bayesian inference allows for the incorporation of extant knowledge of materials and probe behavior in the form of corresponding prior distribution and return the information on the material functionality in the form of readily interpretable posterior distributions. We note that in application of Bayesian methods, special care should be made for proper setting on the problem as model selection vs. establishing practical parameter equivalence. We further explore the non-linear mechanical behaviors at topological defects in a classical ferroelectric material, PbTiO3. We observe the non-trivial evolution of Duffing resonance frequency and the nonlinearity of the sample surface, suggesting the presence of the hidden elements of domain structure. These observations suggest that the spectrum of anomalous behaviors at the ferroelectric domain walls can be significantly broader than previously believed and can extend to non-conventional mechanical properties in addition to static and microwave conductance.
带激发扫描探针显微镜成像中最优动态模型选择的贝叶斯推理
近二十年来,扫描探针显微镜(SPM)的普遍趋势是从简单的二维成像模式向复杂的探测和光谱成像模式过渡。复杂SPM发动机的出现带来了可靠数据解释的挑战,即从检测到的信号转换为特定于尖端表面相互作用的描述符,随后转换为材料特性。在这里,我们实现了贝叶斯推理方法来分析带激发(BE) SPM的成像机制。与经典函数拟合方法中的点估计相比,贝叶斯推理允许以相应的先验分布形式结合现有的材料知识和探针行为,并以易于解释的后验分布形式返回有关材料功能的信息。我们注意到,在贝叶斯方法的应用中,应特别注意模型选择问题与建立实际参数等价问题的适当设置。我们进一步探讨了经典铁电材料PbTiO3在拓扑缺陷处的非线性力学行为。我们观察到Duffing共振频率的非平凡演变和样品表面的非线性,表明存在域结构的隐藏元素。这些观察结果表明,铁电畴壁上的异常行为光谱可能比以前认为的要宽得多,并且除了静态和微波电导外,还可以扩展到非常规的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信