{"title":"Automation of High-Frequency Magnetic Core Loss Data Collection","authors":"Jacob R. Anderson, Mike K. Ranjram","doi":"10.1109/COMPEL52896.2023.10221076","DOIUrl":null,"url":null,"abstract":"Core loss is often reported using power-law fits on a limited amount of data collected on a single core shape. The development of automated testers which output a full ‘loss map’ is one approach towards improving this reporting. Conventional measurement techniques are automatable but only to 500 kHz-1MHz. In this paper, we develop an automated core loss tester suitable for the > 1MHz regime and discuss its implementation and trade-offs. The tester produces data that is within 12.6%-57% of manufacturer-reported data, following similar trends for flux-density versus power loss density but tending to overestimate core loss. Sources of error in the automation procedure are discussed as well as strategies for future improvement of the system.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"115 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Core loss is often reported using power-law fits on a limited amount of data collected on a single core shape. The development of automated testers which output a full ‘loss map’ is one approach towards improving this reporting. Conventional measurement techniques are automatable but only to 500 kHz-1MHz. In this paper, we develop an automated core loss tester suitable for the > 1MHz regime and discuss its implementation and trade-offs. The tester produces data that is within 12.6%-57% of manufacturer-reported data, following similar trends for flux-density versus power loss density but tending to overestimate core loss. Sources of error in the automation procedure are discussed as well as strategies for future improvement of the system.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.