The Behavior of Vertical Axis Water Turbine With Flexible Blades: Self-Start, Ventilation, and Cavitation

Emine Celik Foust
{"title":"The Behavior of Vertical Axis Water Turbine With Flexible Blades: Self-Start, Ventilation, and Cavitation","authors":"Emine Celik Foust","doi":"10.1115/1.4063084","DOIUrl":null,"url":null,"abstract":"\n Three-bladed Darrieus-type vertical axis water turbine is a promising solution for producing electricity with minimal impact on the environment. Although considered a viable option, straight-bladed Darriues-type turbines have not been used commonly due to various operational issues; self-start and stall at low water speeds while ventilation and cavitation are limiting at high water speeds. In this study, the use of flexible blades with an aspect ratio of 2.21 is investigated at water velocities of 0.34, 0.51, 0.68, and 0.85 m/s experimentally. A stiffer turbine that has an 85–95 Shore A hardness blade starts to rotate at 0.51 m/s flow velocity. The more flexible turbine that has a 75–85 Shore A hardness blade starts to rotate at lower water velocities and experiences low rotational speeds resulting in an improved self-start. However, low rotation speed will cause a reduction in the coefficient of performance (Cp). High-speed imaging of the flow field also shows that a low tip speed ratio (TSR) helps to prevent the occurrence of ventilation and cavitation for the turbine with 75–85 Shore A hardness blades.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-bladed Darrieus-type vertical axis water turbine is a promising solution for producing electricity with minimal impact on the environment. Although considered a viable option, straight-bladed Darriues-type turbines have not been used commonly due to various operational issues; self-start and stall at low water speeds while ventilation and cavitation are limiting at high water speeds. In this study, the use of flexible blades with an aspect ratio of 2.21 is investigated at water velocities of 0.34, 0.51, 0.68, and 0.85 m/s experimentally. A stiffer turbine that has an 85–95 Shore A hardness blade starts to rotate at 0.51 m/s flow velocity. The more flexible turbine that has a 75–85 Shore A hardness blade starts to rotate at lower water velocities and experiences low rotational speeds resulting in an improved self-start. However, low rotation speed will cause a reduction in the coefficient of performance (Cp). High-speed imaging of the flow field also shows that a low tip speed ratio (TSR) helps to prevent the occurrence of ventilation and cavitation for the turbine with 75–85 Shore A hardness blades.
柔性叶片垂直轴水轮机的特性:自启动、通风和空化
三叶片达里厄式垂直轴水轮机是一种对环境影响最小的发电解决方案。虽然被认为是一个可行的选择,但由于各种操作问题,直叶达里乌斯型涡轮机尚未普遍使用;在低水速下自动启动和失速,而在高水速下通风和空化受到限制。本研究在0.34、0.51、0.68和0.85 m/s的水流速下,对展弦比为2.21的柔性叶片进行了实验研究。一个硬度为85-95邵氏硬度叶片的刚性涡轮以0.51米/秒的流速开始旋转。具有75-85邵氏硬度叶片的更灵活的涡轮机在较低的水速下开始旋转,并且经历较低的转速,从而改善了自启动。然而,低转速会导致性能系数(Cp)的降低。流场的高速成像也表明,低叶尖速比(TSR)有助于防止75-85邵尔a硬度叶片涡轮通风和空化的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信