Dynamic covariance modeling with artificial neural networks

Q4 Mathematics
Wing Ki Liu, Mike K. P. So, Amanda M. Y. Chu
{"title":"Dynamic covariance modeling with artificial neural networks","authors":"Wing Ki Liu, Mike K. P. So, Amanda M. Y. Chu","doi":"10.1080/23737484.2021.1972876","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes a novel multivariate generalized autoregressive conditionally heteroscedastic (GARCH) model that incorporates the modified Cholesky decomposition for a covariance matrix in order to reduce the number of covariance parameters and increase the interpretation power of the model. The modified Cholesky decomposition for covariance matrix reduces the number of covariance parameters to , where p is the dimension of the stocks in the data, and enables us to obtain a regression equation. To account for the nonlinearity in the GARCH model, the parameters in our model are modeled using long short-term memory. The proposed model is compared with DCC model with respect to portfolio optimization and the distances between the actual covariance matrices and predicted covariance matrices. It is found that although the distances may or may not be reduced by our proposed model in different cases presented in this article, our proposed model outperforms the DCC model in terms of mean portfolio returns.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"94 1","pages":"15 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1972876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article proposes a novel multivariate generalized autoregressive conditionally heteroscedastic (GARCH) model that incorporates the modified Cholesky decomposition for a covariance matrix in order to reduce the number of covariance parameters and increase the interpretation power of the model. The modified Cholesky decomposition for covariance matrix reduces the number of covariance parameters to , where p is the dimension of the stocks in the data, and enables us to obtain a regression equation. To account for the nonlinearity in the GARCH model, the parameters in our model are modeled using long short-term memory. The proposed model is compared with DCC model with respect to portfolio optimization and the distances between the actual covariance matrices and predicted covariance matrices. It is found that although the distances may or may not be reduced by our proposed model in different cases presented in this article, our proposed model outperforms the DCC model in terms of mean portfolio returns.
基于人工神经网络的动态协方差建模
摘要本文提出了一种新的多元广义自回归条件异方差(GARCH)模型,该模型在协方差矩阵中加入了改进的Cholesky分解,以减少协方差参数的数量,提高模型的解释能力。对协方差矩阵进行修正的Cholesky分解,将协方差参数的个数减少为,其中p为数据中股票的维数,从而得到回归方程。为了考虑GARCH模型中的非线性,我们的模型中的参数是使用长短期记忆建模的。将该模型与DCC模型在组合优化、实际协方差矩阵与预测协方差矩阵之间的距离等方面进行了比较。研究发现,尽管本文提出的模型在不同情况下可能会或可能不会减少距离,但就平均投资组合收益而言,我们提出的模型优于DCC模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信