Y. Alexeev, Michael W. Schmidt, T. Windus, M. Gordon, R. Kendall
{"title":"Performance and implementation of distributed data CPHF and SCF algorithms","authors":"Y. Alexeev, Michael W. Schmidt, T. Windus, M. Gordon, R. Kendall","doi":"10.1109/CLUSTR.2002.1137738","DOIUrl":null,"url":null,"abstract":"This paper describes a novel distributed data parallel self consistent field (SCF) algorithm and the distributed data coupled perturbed Hartree-Fock (CPHF) step of an analytic Hessian algorithm. The distinguishing features of these algorithms are: (a) columns of density and Fock matrices are distributed among processors, (b) pairwise dynamic load balancing and an efficient static load balancer were developed to achieve a good workload, and (c) network communication time is minimized via careful analysis of data flow in the SCF and CPHF algorithms. By using a shared memory model, novel work load balancers, and improved analytic Hessian steps, we have developed codes that achieve superb performance. The performance of the CPHF code is demonstrated on a large biological system.","PeriodicalId":92128,"journal":{"name":"Proceedings. IEEE International Conference on Cluster Computing","volume":"2 1","pages":"135-142"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2002.1137738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a novel distributed data parallel self consistent field (SCF) algorithm and the distributed data coupled perturbed Hartree-Fock (CPHF) step of an analytic Hessian algorithm. The distinguishing features of these algorithms are: (a) columns of density and Fock matrices are distributed among processors, (b) pairwise dynamic load balancing and an efficient static load balancer were developed to achieve a good workload, and (c) network communication time is minimized via careful analysis of data flow in the SCF and CPHF algorithms. By using a shared memory model, novel work load balancers, and improved analytic Hessian steps, we have developed codes that achieve superb performance. The performance of the CPHF code is demonstrated on a large biological system.