{"title":"The Effects of Fine Particle Peening on Surface Residual Stress of a TRIP-Aided Bainitic Ferrite Steel","authors":"Masahiro Natori, Sung-Moo Song, K. Sugimoto","doi":"10.2472/JSMS.63.662","DOIUrl":null,"url":null,"abstract":"To apply a transformation-induced plasticity (TRIP)-aided steel consisting of bainitic ferrite structure matrix and metastable retained austenite of 10 vol% (TBF steel) to some precision gears, the effects of fine particle peening on the Vickers hardness and residual stress in a surface layer of the TBF steel were investigated. The peened surface layer showed much higher Vickers hardness and compressive residual stress than those of a quenched and tempered SNCM420 steel. The increased Vickers hardness was mainly caused by an increase in the strain-induced transformed martensite fraction. The compressive residual stress was increased by the increases in size and gravity of shot material and arc-height. The higher compressive residual stress was principally associated with (1) plastic strain due to severe plastic deformation and (2) expansion strain due to the strain-induced transformation of metastable retained austenite. Contribution of the (2) was approximately 30% of total residual stress.","PeriodicalId":17366,"journal":{"name":"journal of the Japan Society for Testing Materials","volume":"18 1","pages":"662-668"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"journal of the Japan Society for Testing Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2472/JSMS.63.662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
To apply a transformation-induced plasticity (TRIP)-aided steel consisting of bainitic ferrite structure matrix and metastable retained austenite of 10 vol% (TBF steel) to some precision gears, the effects of fine particle peening on the Vickers hardness and residual stress in a surface layer of the TBF steel were investigated. The peened surface layer showed much higher Vickers hardness and compressive residual stress than those of a quenched and tempered SNCM420 steel. The increased Vickers hardness was mainly caused by an increase in the strain-induced transformed martensite fraction. The compressive residual stress was increased by the increases in size and gravity of shot material and arc-height. The higher compressive residual stress was principally associated with (1) plastic strain due to severe plastic deformation and (2) expansion strain due to the strain-induced transformation of metastable retained austenite. Contribution of the (2) was approximately 30% of total residual stress.