L. Kudrjavceva, M. Mićunović, D. Miloradović, A. Obradović
{"title":"Bertolino-Baksa stability at nonlinear vibrations of motor vehicles","authors":"L. Kudrjavceva, M. Mićunović, D. Miloradović, A. Obradović","doi":"10.2298/TAM171128019K","DOIUrl":null,"url":null,"abstract":"Research of vehicle response to road roughness is particularly important when solving problems related to dynamic vehicle stability. In this paper, unevenness of roads is considered as the source of non-linear vibrations of motor vehicles. The vehicle is represented by an equivalent spatial model with seven degrees of freedom. In addition to solving the response by simulating it within a numerical code, quasi-linearization of nonlinear differential equations of motion is carried out. Solutions of quasi-linear differential equations of forced vibrations are determined using the small parameter method and are indispensable for the study of spatial stability of the vehicle. An optimal stabilization for a simplified two-dimensional model was performed. Spatial stability and internal resonance are considered briefly.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/TAM171128019K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Research of vehicle response to road roughness is particularly important when solving problems related to dynamic vehicle stability. In this paper, unevenness of roads is considered as the source of non-linear vibrations of motor vehicles. The vehicle is represented by an equivalent spatial model with seven degrees of freedom. In addition to solving the response by simulating it within a numerical code, quasi-linearization of nonlinear differential equations of motion is carried out. Solutions of quasi-linear differential equations of forced vibrations are determined using the small parameter method and are indispensable for the study of spatial stability of the vehicle. An optimal stabilization for a simplified two-dimensional model was performed. Spatial stability and internal resonance are considered briefly.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.