I. Kurata, J. A. Flores-Livas, H. Sugimoto, H. Takahashi, H. Sagayama, Y. Yamasaki, T. Nomoto, R. Arita, S. Ishiwata
{"title":"High-pressure synthesis of \nBa2RhO4\n, a rhodate analog of the layered perovskite Sr-ruthenate","authors":"I. Kurata, J. A. Flores-Livas, H. Sugimoto, H. Takahashi, H. Sagayama, Y. Yamasaki, T. Nomoto, R. Arita, S. Ishiwata","doi":"10.1103/PHYSREVMATERIALS.5.015001","DOIUrl":null,"url":null,"abstract":"A new layered perovskite-type oxide Ba$_2$RhO$_4$ was synthesized by a high-pressure technique with the support of convex-hull calculations. The crystal and electronic structure were studied by both experimental and computational tools. Structural refinements for powder x-ray diffraction data showed that Ba$_2$RhO$_4$ crystallizes in a K$_2$NiF$_4$-type structure, isostructural to Sr$_2$RuO$_4$ and Ba$_2$IrO$_4$. Magnetic, resistivity, and specific heat measurements for polycrystalline samples of Ba$_2$RhO$_4$ indicate that the system can be characterized as a correlated metal. Despite the close similarity to its Sr$_2$RuO$_4$ counterpart in the electronic specific heat coefficient and the Wilson ratio, Ba$_2$RhO$_4$ shows no signature of superconductivity down to 0.16 K. Whereas the Fermi surface topology has reminiscent pieces of Sr$_2$RuO$_4$, an electron-like e$_g$-($d_{x^2-y^2}$) band descends below the Fermi level, making of this compound unique also as a metallic counterpart of the spin-orbit-coupled Mott insulator Ba$_2$IrO$_4$.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVMATERIALS.5.015001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A new layered perovskite-type oxide Ba$_2$RhO$_4$ was synthesized by a high-pressure technique with the support of convex-hull calculations. The crystal and electronic structure were studied by both experimental and computational tools. Structural refinements for powder x-ray diffraction data showed that Ba$_2$RhO$_4$ crystallizes in a K$_2$NiF$_4$-type structure, isostructural to Sr$_2$RuO$_4$ and Ba$_2$IrO$_4$. Magnetic, resistivity, and specific heat measurements for polycrystalline samples of Ba$_2$RhO$_4$ indicate that the system can be characterized as a correlated metal. Despite the close similarity to its Sr$_2$RuO$_4$ counterpart in the electronic specific heat coefficient and the Wilson ratio, Ba$_2$RhO$_4$ shows no signature of superconductivity down to 0.16 K. Whereas the Fermi surface topology has reminiscent pieces of Sr$_2$RuO$_4$, an electron-like e$_g$-($d_{x^2-y^2}$) band descends below the Fermi level, making of this compound unique also as a metallic counterpart of the spin-orbit-coupled Mott insulator Ba$_2$IrO$_4$.