A systematic $1/c$-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model

Etienne Granet, F. Essler
{"title":"A systematic $1/c$-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model","authors":"Etienne Granet, F. Essler","doi":"10.21468/SCIPOSTPHYS.9.6.082","DOIUrl":null,"url":null,"abstract":"We introduce a framework for calculating dynamical correlations in the Lieb-Liniger model in arbitrary energy eigenstates and for all space and time, that combines a Lehmann representation with a $1/c$ expansion. The $n^{\\rm th}$ term of the expansion is of order $1/c^n$ and takes into account all $\\lfloor \\tfrac{n}{2}\\rfloor+1$ particle-hole excitations over the averaging eigenstate. Importantly, in contrast to a 'bare' $1/c$ expansion it is uniform in space and time. The framework is based on a method for taking the thermodynamic limit of sums of form factors that exhibit non integrable singularities. We expect our framework to be applicable to any local operator. \nWe determine the first three terms of this expansion and obtain an explicit expression for the density-density dynamical correlations and the dynamical structure factor at order $1/c^2$. We apply these to finite-temperature equilibrium states and non-equilibrium steady states after quantum quenches. We recover predictions of (nonlinear) Luttinger liquid theory and generalized hydrodynamics in the appropriate limits, and are able to compute sub-leading corrections to these.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.9.6.082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We introduce a framework for calculating dynamical correlations in the Lieb-Liniger model in arbitrary energy eigenstates and for all space and time, that combines a Lehmann representation with a $1/c$ expansion. The $n^{\rm th}$ term of the expansion is of order $1/c^n$ and takes into account all $\lfloor \tfrac{n}{2}\rfloor+1$ particle-hole excitations over the averaging eigenstate. Importantly, in contrast to a 'bare' $1/c$ expansion it is uniform in space and time. The framework is based on a method for taking the thermodynamic limit of sums of form factors that exhibit non integrable singularities. We expect our framework to be applicable to any local operator. We determine the first three terms of this expansion and obtain an explicit expression for the density-density dynamical correlations and the dynamical structure factor at order $1/c^2$. We apply these to finite-temperature equilibrium states and non-equilibrium steady states after quantum quenches. We recover predictions of (nonlinear) Luttinger liquid theory and generalized hydrodynamics in the appropriate limits, and are able to compute sub-leading corrections to these.
利布-利尼格模型中动态关联形式因子和的系统$1/c$展开
我们引入了一个框架,用于计算任意能量特征态和所有空间和时间下Lieb-Liniger模型中的动态相关性,该框架将Lehmann表示与$1/c$展开相结合。展开的$n^{\rm th}$项是$1/c^n$阶的,并且考虑了平均本征态上的所有$\ 1 floor \ trfrac {n}{2}\rfloor+1$粒子-空穴激励。重要的是,与“裸”1美元/美元的膨胀相比,它在空间和时间上是均匀的。该框架是基于一种方法来取表现出不可积奇点的形式因子和的热力学极限。我们希望我们的框架适用于任何本地运营商。我们确定了这个展开式的前三项,并得到了密度-密度动态关联和阶$1/c^2$的动态结构因子的显式表达式。我们将这些应用于量子猝灭后的有限温度平衡态和非平衡稳态。我们恢复了(非线性)Luttinger液体理论和广义流体力学的预测在适当的限制下,并能够计算这些的子导校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信