Excellent rear side passivation on multi-crystalline silicon solar cells with 20 nm uncapped Al2O3 layer: Industrialization of ALD for solar cell applications

I. Cesar, E. Granneman, P. Vermont, E. Tois, P. Manshanden, L. J. Geerligs, E. Bende, A. Burgers, A. Mewe, Y. Komatsu, A. Weeber
{"title":"Excellent rear side passivation on multi-crystalline silicon solar cells with 20 nm uncapped Al2O3 layer: Industrialization of ALD for solar cell applications","authors":"I. Cesar, E. Granneman, P. Vermont, E. Tois, P. Manshanden, L. J. Geerligs, E. Bende, A. Burgers, A. Mewe, Y. Komatsu, A. Weeber","doi":"10.1109/PVSC.2010.5614176","DOIUrl":null,"url":null,"abstract":"Current bottlenecks for industrialization of Al2O3 deposited by Atomic Layer Deposition (ALD) for crystalline silicon solar cell applications are low growth rate and stability of thin and uncapped layers during co-firing. First results on the performance of a high throughput ALD proto-type, the Levitrack, are presented. Excellent passivation properties have been obtained after firing, for 12 nm thick films deposited on p-Cz (2.3 Ω.cm) with Seff <15cm/s (Δn=3×1015 cm−3). These layers are compatible with solar cells that operate at a maximum open-circuit voltage of 720mV. Furthermore, we report on the passivation of 20nm uncapped aluminum oxide layers on the rear of p-type mc-Si bifacial cells. LBIC measurements unveiled excellent passivation properties on areas covered by 20nm of Al2O3 characterized by an IQE of 91% at 980nm. Remarkably, these lifetime and cell results were obtained without lengthy post-treatments like forming gas anneal.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"25 1","pages":"000044-000049"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Current bottlenecks for industrialization of Al2O3 deposited by Atomic Layer Deposition (ALD) for crystalline silicon solar cell applications are low growth rate and stability of thin and uncapped layers during co-firing. First results on the performance of a high throughput ALD proto-type, the Levitrack, are presented. Excellent passivation properties have been obtained after firing, for 12 nm thick films deposited on p-Cz (2.3 Ω.cm) with Seff <15cm/s (Δn=3×1015 cm−3). These layers are compatible with solar cells that operate at a maximum open-circuit voltage of 720mV. Furthermore, we report on the passivation of 20nm uncapped aluminum oxide layers on the rear of p-type mc-Si bifacial cells. LBIC measurements unveiled excellent passivation properties on areas covered by 20nm of Al2O3 characterized by an IQE of 91% at 980nm. Remarkably, these lifetime and cell results were obtained without lengthy post-treatments like forming gas anneal.
20 nm无封顶Al2O3层多晶硅太阳能电池的优异后侧钝化:太阳能电池应用ALD的产业化
目前,原子层沉积法(ALD)制备用于晶体硅太阳能电池的Al2O3产业化的瓶颈是共烧过程中低生长速率和无帽薄层的稳定性。介绍了高通量ALD原型Levitrack性能的第一个结果。在p-Cz (2.3 Ω.cm)表面沉积12 nm厚的膜,当Seff <15cm/s (Δn=3×1015 cm−3)时,得到了良好的钝化性能。这些层与最大开路电压为720mV的太阳能电池兼容。此外,我们报道了在p型mc-Si双面电池背面20nm无盖氧化铝层的钝化。LBIC测量揭示了20nm Al2O3覆盖区域的优异钝化性能,在980nm处的IQE为91%。值得注意的是,这些寿命和细胞结果没有经过漫长的后处理,如形成气体退火。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信