{"title":"Transient Temperature Distribution in a Half-Space Due to Local Surface Heating via Non-Fourier Fractional Dual-Phase-Lag Model","authors":"X.Y. Zhang, Y. Hu, Xian‐Fang Li","doi":"10.1115/1.4062755","DOIUrl":null,"url":null,"abstract":"\n The non-Fourier heat transfer in a half-space is analyzed under sudden heating or cooling on a local surface. The non-Fourier heat transfer effect is described by the time-fractional dual-phase-lag (DPL) model, where the fractional derivative without singular kernel is used. An axisymmetric mixed initial-boundary value problem is solved by the use of the Hankel and Laplace transforms. Two typical cases of sudden temperature rising on a circular zone of the surface or an instantaneous surface heat source are analyzed. For sudden temperature rises, the heat flux and temperature gradient exhibit an inverse square-root singularity near the boundary of the heating zone and their dynamic intensity factors are computed numerically in the time domain. For the instantaneous surface point heat source, an exact solution of the transient temperature at any position in the Laplace domain is obtained. The effects of the fractional order and relaxation time on the temperature distribution and heat flux response are elucidated. The singular behavior of the transient thermal response and the non-Fourier effect of heat transfer are shown.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"33 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062755","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The non-Fourier heat transfer in a half-space is analyzed under sudden heating or cooling on a local surface. The non-Fourier heat transfer effect is described by the time-fractional dual-phase-lag (DPL) model, where the fractional derivative without singular kernel is used. An axisymmetric mixed initial-boundary value problem is solved by the use of the Hankel and Laplace transforms. Two typical cases of sudden temperature rising on a circular zone of the surface or an instantaneous surface heat source are analyzed. For sudden temperature rises, the heat flux and temperature gradient exhibit an inverse square-root singularity near the boundary of the heating zone and their dynamic intensity factors are computed numerically in the time domain. For the instantaneous surface point heat source, an exact solution of the transient temperature at any position in the Laplace domain is obtained. The effects of the fractional order and relaxation time on the temperature distribution and heat flux response are elucidated. The singular behavior of the transient thermal response and the non-Fourier effect of heat transfer are shown.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.