{"title":"Study and Characterization of a Spherical Solar Collector. Part II: Comparative Analysis with Flat-Plate Devices","authors":"C. Armenta-Déu","doi":"10.21926/jept.2303025","DOIUrl":null,"url":null,"abstract":"The paper analyses the performance of a spherical solar collector compared to the efficiency of a flat-plate solar collector, which is the type of solar collector that does not use a tracking system in collecting solar radiation for energy conversion. Spherical solar collector benefits from a constant value of the angle of incidence, which optimizes the solar radiation that strikes the absorber of the solar device and maximizes the energy collection. Besides, the spherical geometry has a larger area for equal dimensions, width, and length. The combined effect of a larger surface and a higher value of the effective solar radiation onto the surface of the absorber increases the energy collection and the performance of the solar device. We developed a theoretical analysis to obtain the algorithm to determine the collected solar energy, which increases when using the spherical solar collector. A simulation runs to calculate the predicted values. We developed experimental tests in a spherical solar collector of 1.05 m in diameter, and in a flat-plate solar collector of 1.94 m × 1.025 m. to validate the simulation. The comparative analysis shows that a spherical solar collector generates more energy than a flat-plate one of the same absorbing surface by a factor of 2.09, and 7.75 times more if the width and height of the flat-plate collector equals the diameter of the spherical one.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"87 7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2303025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The paper analyses the performance of a spherical solar collector compared to the efficiency of a flat-plate solar collector, which is the type of solar collector that does not use a tracking system in collecting solar radiation for energy conversion. Spherical solar collector benefits from a constant value of the angle of incidence, which optimizes the solar radiation that strikes the absorber of the solar device and maximizes the energy collection. Besides, the spherical geometry has a larger area for equal dimensions, width, and length. The combined effect of a larger surface and a higher value of the effective solar radiation onto the surface of the absorber increases the energy collection and the performance of the solar device. We developed a theoretical analysis to obtain the algorithm to determine the collected solar energy, which increases when using the spherical solar collector. A simulation runs to calculate the predicted values. We developed experimental tests in a spherical solar collector of 1.05 m in diameter, and in a flat-plate solar collector of 1.94 m × 1.025 m. to validate the simulation. The comparative analysis shows that a spherical solar collector generates more energy than a flat-plate one of the same absorbing surface by a factor of 2.09, and 7.75 times more if the width and height of the flat-plate collector equals the diameter of the spherical one.