CNeRV: Content-adaptive Neural Representation for Visual Data

Hao Chen, M. Gwilliam, Bo He, S. Lim, Abhinav Shrivastava
{"title":"CNeRV: Content-adaptive Neural Representation for Visual Data","authors":"Hao Chen, M. Gwilliam, Bo He, S. Lim, Abhinav Shrivastava","doi":"10.48550/arXiv.2211.10421","DOIUrl":null,"url":null,"abstract":"Compression and reconstruction of visual data have been widely studied in the computer vision community, even before the popularization of deep learning. More recently, some have used deep learning to improve or refine existing pipelines, while others have proposed end-to-end approaches, including autoencoders and implicit neural representations, such as SIREN and NeRV. In this work, we propose Neural Visual Representation with Content-adaptive Embedding (CNeRV), which combines the generalizability of autoencoders with the simplicity and compactness of implicit representation. We introduce a novel content-adaptive embedding that is unified, concise, and internally (within-video) generalizable, that compliments a powerful decoder with a single-layer encoder. We match the performance of NeRV, a state-of-the-art implicit neural representation, on the reconstruction task for frames seen during training while far surpassing for frames that are skipped during training (unseen images). To achieve similar reconstruction quality on unseen images, NeRV needs 120x more time to overfit per-frame due to its lack of internal generalization. With the same latent code length and similar model size, CNeRV outperforms autoencoders on reconstruction of both seen and unseen images. We also show promising results for visual data compression. More details can be found in the project pagehttps://haochen-rye.github.io/CNeRV/","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"31 1","pages":"510"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.10421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Compression and reconstruction of visual data have been widely studied in the computer vision community, even before the popularization of deep learning. More recently, some have used deep learning to improve or refine existing pipelines, while others have proposed end-to-end approaches, including autoencoders and implicit neural representations, such as SIREN and NeRV. In this work, we propose Neural Visual Representation with Content-adaptive Embedding (CNeRV), which combines the generalizability of autoencoders with the simplicity and compactness of implicit representation. We introduce a novel content-adaptive embedding that is unified, concise, and internally (within-video) generalizable, that compliments a powerful decoder with a single-layer encoder. We match the performance of NeRV, a state-of-the-art implicit neural representation, on the reconstruction task for frames seen during training while far surpassing for frames that are skipped during training (unseen images). To achieve similar reconstruction quality on unseen images, NeRV needs 120x more time to overfit per-frame due to its lack of internal generalization. With the same latent code length and similar model size, CNeRV outperforms autoencoders on reconstruction of both seen and unseen images. We also show promising results for visual data compression. More details can be found in the project pagehttps://haochen-rye.github.io/CNeRV/
视觉数据的内容自适应神经表示
在深度学习普及之前,视觉数据的压缩和重构在计算机视觉界就已经得到了广泛的研究。最近,一些人使用深度学习来改进或完善现有的管道,而另一些人则提出了端到端方法,包括自动编码器和隐式神经表示,如SIREN和NeRV。在这项工作中,我们提出了带有内容自适应嵌入(CNeRV)的神经视觉表示,它结合了自编码器的可泛化性和隐式表示的简单性和紧凑性。我们介绍了一种新颖的内容自适应嵌入,它是统一的,简洁的,并且在内部(视频内)可推广的,它补充了一个强大的解码器和一个单层编码器。我们在训练过程中看到的帧的重建任务上匹配了NeRV(一种最先进的隐式神经表示)的性能,而在训练过程中跳过的帧(看不见的图像)的重建任务上则远远超过了NeRV。为了在未见过的图像上实现类似的重建质量,由于缺乏内部泛化,NeRV每帧需要120倍的过拟合时间。在相同的潜在代码长度和相似的模型大小下,CNeRV在重建可见和未见图像方面都优于自编码器。我们还展示了视觉数据压缩的良好结果。更多细节可以在项目页面https://haoch-rye.github.io/cnerv /中找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信