Yen-Sheng Ho, P. Chauhan, Pritam Roy, A. Mishchenko, R. Brayton
{"title":"Efficient uninterpreted function abstraction and refinement for word-level model checking","authors":"Yen-Sheng Ho, P. Chauhan, Pritam Roy, A. Mishchenko, R. Brayton","doi":"10.1109/FMCAD.2016.7886662","DOIUrl":null,"url":null,"abstract":"Methods for word-level model checking based on purely bit-level techniques have difficulties with heavy arithmetic logic. Word-level and SMT approaches often are limited by relying on (incomplete) bounded model checking. UFAR, a hybrid word- and bit-level approach, addresses these issues, taking advantage of modern bit-level sequential techniques while heavy arithmetic logic is addressed by word-level abstraction and the use of uninterpreted function (UF) constraints. The methods and efficiency improvements developed for UFAR enabled it to prove 2422 of a set of 2492 industrial sequential model checking problems within a 1-hour limit, while a bit-level model checker super prove completed only 2115 of these within the same limit.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"82 1","pages":"65-72"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2016.7886662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Methods for word-level model checking based on purely bit-level techniques have difficulties with heavy arithmetic logic. Word-level and SMT approaches often are limited by relying on (incomplete) bounded model checking. UFAR, a hybrid word- and bit-level approach, addresses these issues, taking advantage of modern bit-level sequential techniques while heavy arithmetic logic is addressed by word-level abstraction and the use of uninterpreted function (UF) constraints. The methods and efficiency improvements developed for UFAR enabled it to prove 2422 of a set of 2492 industrial sequential model checking problems within a 1-hour limit, while a bit-level model checker super prove completed only 2115 of these within the same limit.