Fusing Search Results from Possible Alternative Queries

Ashraf Bah Rabiou, Ben Carterette
{"title":"Fusing Search Results from Possible Alternative Queries","authors":"Ashraf Bah Rabiou, Ben Carterette","doi":"10.1109/WI.2016.0105","DOIUrl":null,"url":null,"abstract":"Data fusion has been shown to be a simple and effective way to improve retrieval results. Most existing data fusion methods combine ranked lists from different retrieval functions for a single given query—but in most real search settings, the diversity of retrieval functions required to achieve good fusion performance is not available. This paper presents a method for data fusion based on combining ranked lists from different queries that users could have entered for their information need, keeping the retrieval function fixed. We argue that if we can obtain a set of \"possible queries\" for an information need, we can achieve high effectiveness by fusing the rankings over the possible queries. In order to demonstrate effectiveness, we present experimental results on 5 different datasets covering tasks such as ad-hoc search, novelty and diversity search, and search in the presence of implicit user feedback. Our results show strong performances for our method, it is competitive with state-of-the-art methods on the same datasets, and in some cases outperforms them.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"29 1","pages":"606-609"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data fusion has been shown to be a simple and effective way to improve retrieval results. Most existing data fusion methods combine ranked lists from different retrieval functions for a single given query—but in most real search settings, the diversity of retrieval functions required to achieve good fusion performance is not available. This paper presents a method for data fusion based on combining ranked lists from different queries that users could have entered for their information need, keeping the retrieval function fixed. We argue that if we can obtain a set of "possible queries" for an information need, we can achieve high effectiveness by fusing the rankings over the possible queries. In order to demonstrate effectiveness, we present experimental results on 5 different datasets covering tasks such as ad-hoc search, novelty and diversity search, and search in the presence of implicit user feedback. Our results show strong performances for our method, it is competitive with state-of-the-art methods on the same datasets, and in some cases outperforms them.
从可能的替代查询融合搜索结果
数据融合是提高检索结果的一种简单有效的方法。大多数现有的数据融合方法将来自不同检索功能的排名列表组合到一个给定查询中,但在大多数实际搜索设置中,实现良好融合性能所需的检索功能的多样性是不可用的。本文提出了一种数据融合的方法,该方法在保持检索功能不变的情况下,将用户可能输入的不同查询的排序列表组合在一起。我们认为,如果我们能够获得一组信息需求的“可能查询”,我们就可以通过融合可能查询的排名来实现高效率。为了证明该方法的有效性,我们在5个不同的数据集上展示了实验结果,包括临时搜索、新颖性和多样性搜索以及存在隐式用户反馈的搜索。我们的结果显示我们的方法具有很强的性能,在相同的数据集上与最先进的方法竞争,并且在某些情况下优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信