A method for estimating the statistical error of the solution in the inverse spectroscopy problem

IF 0.3 Q4 MATHEMATICS
T. M. Bannikova, V. Nemtsov, N. Baranova, G. Konygin, O. Nemtsova
{"title":"A method for estimating the statistical error of the solution in the inverse spectroscopy problem","authors":"T. M. Bannikova, V. Nemtsov, N. Baranova, G. Konygin, O. Nemtsova","doi":"10.35634/2226-3594-2021-58-01","DOIUrl":null,"url":null,"abstract":"A method for obtaining the interval of statistical error of the solution of the inverse spectroscopy problem, for the estimation of the statistical error of experimental data of which the normal distribution law can be applied, has been proposed. With the help of mathematical modeling of the statistical error of partial spectral components obtained from the numerically stable solution of the inverse problem, it has become possible to specify the error of the corresponding solution. The problem of getting the inverse solution error interval is actual because the existing methods of solution error evaluation are based on the analysis of smooth functional dependences under rigid restrictions on the region of acceptable solutions (compactness, monotonicity, etc.). Their use in computer processing of real experimental data is extremely difficult and therefore, as a rule, is not applied. Based on the extraction of partial spectral components and the estimation of their error, a method for obtaining an interval of statistical error for the solution of inverse spectroscopy problems has been proposed in this work. The necessity and importance of finding the solution error interval to provide reliable results is demonstrated using examples of processing Mössbauer spectra.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2021-58-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A method for obtaining the interval of statistical error of the solution of the inverse spectroscopy problem, for the estimation of the statistical error of experimental data of which the normal distribution law can be applied, has been proposed. With the help of mathematical modeling of the statistical error of partial spectral components obtained from the numerically stable solution of the inverse problem, it has become possible to specify the error of the corresponding solution. The problem of getting the inverse solution error interval is actual because the existing methods of solution error evaluation are based on the analysis of smooth functional dependences under rigid restrictions on the region of acceptable solutions (compactness, monotonicity, etc.). Their use in computer processing of real experimental data is extremely difficult and therefore, as a rule, is not applied. Based on the extraction of partial spectral components and the estimation of their error, a method for obtaining an interval of statistical error for the solution of inverse spectroscopy problems has been proposed in this work. The necessity and importance of finding the solution error interval to provide reliable results is demonstrated using examples of processing Mössbauer spectra.
反演光谱问题解的统计误差估计方法
提出了一种求光谱反演问题解的统计误差区间的方法,用于估计适用正态分布规律的实验数据的统计误差。借助对反问题数值稳定解得到的部分谱分量统计误差的数学建模,可以指定相应解的误差。由于现有的解误差评价方法是基于对可接受解区域(紧性、单调性等)的光滑泛函依赖性的分析,因此求逆解误差区间的问题是实际存在的。它们在计算机处理真实实验数据时极为困难,因此通常不应用。本文在提取部分光谱分量及其误差估计的基础上,提出了一种反演光谱问题统计误差区间的计算方法。通过处理Mössbauer光谱的实例,说明了找出解误差区间以提供可靠结果的必要性和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信