Hoang Tran-Viet, Hajime Tazaki, Q. D. Coninck, O. Bonaventure
{"title":"Voice-Activated Applications and Multipath TCP: A Good Match?","authors":"Hoang Tran-Viet, Hajime Tazaki, Q. D. Coninck, O. Bonaventure","doi":"10.23919/TMA.2018.8506489","DOIUrl":null,"url":null,"abstract":"Voice is progressively becoming a popular way to interact with mobile devices such as smartphones or connected cars. Most of the current deployments depend on cloud services to recognize the user,s commands. For this reason, voice-controlled applications have stringent requirements in terms of delay or availability. On the other hand, many of the devices using such applications are attached to several wireless networks. On iPhones, Multipath TCP made voice-enabled applications useable while users move from cellular to WiFi. In this paper, we leverage the MONROE platform to analyze the performance of Multipath TCP for voice-activated applications. For this, we port the Multipath TCP Linux kernel code into the Linux Kernel Library so that it can run as a regular application. We extend iperf3 to emulate voice-activated applications and carry out measurement campaigns. Our measurements show that Multipath TCP brings clear benefits for users attached to two networks.","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Voice is progressively becoming a popular way to interact with mobile devices such as smartphones or connected cars. Most of the current deployments depend on cloud services to recognize the user,s commands. For this reason, voice-controlled applications have stringent requirements in terms of delay or availability. On the other hand, many of the devices using such applications are attached to several wireless networks. On iPhones, Multipath TCP made voice-enabled applications useable while users move from cellular to WiFi. In this paper, we leverage the MONROE platform to analyze the performance of Multipath TCP for voice-activated applications. For this, we port the Multipath TCP Linux kernel code into the Linux Kernel Library so that it can run as a regular application. We extend iperf3 to emulate voice-activated applications and carry out measurement campaigns. Our measurements show that Multipath TCP brings clear benefits for users attached to two networks.