Controlled precision volume integration

K. Novins, J. Arvo
{"title":"Controlled precision volume integration","authors":"K. Novins, J. Arvo","doi":"10.1145/147130.147154","DOIUrl":null,"url":null,"abstract":"Traditional methods for evaluating the low-albedo volume rendering integral do not include bounds on the magnitude of approximation error. In this paper, we examine three techniques for solving this integral with error bounds: trapezoid rule, Simpson’s rule, and a power series method. In each case, the expression for the error bound provides a mechanism for computing the integral to any specified precision. The formulations presented are appropriate for polynomial reconstruction from point samples; however, the approach is considerably mom general. The three techniques we present differ in relative efficiency for computing results to a given precision. The trapezoid rule and Simpson’s rule are most efficient for lowto medium-precision solutions. The power series method converges rapidly to a machine precision solution, providing both an efficient means for high-accuracy volume rendering, and a reference standard by which other approximations may be measured. CR","PeriodicalId":20479,"journal":{"name":"Proceedings of the 1992 workshop on Volume visualization","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 workshop on Volume visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/147130.147154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Traditional methods for evaluating the low-albedo volume rendering integral do not include bounds on the magnitude of approximation error. In this paper, we examine three techniques for solving this integral with error bounds: trapezoid rule, Simpson’s rule, and a power series method. In each case, the expression for the error bound provides a mechanism for computing the integral to any specified precision. The formulations presented are appropriate for polynomial reconstruction from point samples; however, the approach is considerably mom general. The three techniques we present differ in relative efficiency for computing results to a given precision. The trapezoid rule and Simpson’s rule are most efficient for lowto medium-precision solutions. The power series method converges rapidly to a machine precision solution, providing both an efficient means for high-accuracy volume rendering, and a reference standard by which other approximations may be measured. CR
可控精密体积集成
传统的低反照率体绘制积分计算方法不包含近似误差大小的限制。在本文中,我们研究了三种求解这种带误差界积分的方法:梯形法则、辛普森法则和幂级数法。在每种情况下,误差边界表达式都提供了一种机制,可以将积分计算到任意指定的精度。给出的公式适用于从点样本进行多项式重构;然而,这种方法是相当通用的。我们提出的三种技术在给定精度的计算结果的相对效率方面有所不同。梯形法则和辛普森法则对于中低精度解是最有效的。幂级数法迅速收敛于机器精度解,既提供了高精度体绘制的有效手段,又为测量其他近似提供了参考标准。CR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信