Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary

IF 0.5 Q3 MATHEMATICS
A. Savin, B. Sternin
{"title":"Homotopy classification of elliptic problems associated with discrete group actions on manifolds with boundary","authors":"A. Savin, B. Sternin","doi":"10.13108/2016-8-3-122","DOIUrl":null,"url":null,"abstract":"Given an action of a discrete group G on a smooth compact manifold M with a boundary, we consider a class of operators generated by pseudodifferential operators on M and shift operators associated with the group action. For elliptic operators in this class, we obtain a classification up to stable homotopies and show that the group of stable homotopy classes of such problems is isomorphic to the K-group of the crossed product of the algebra of continuous functions on the cotangent bundle over the interior of the manifold and the group G acting on this algebra by automorphisms.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"15 1","pages":"122-129"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-3-122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Given an action of a discrete group G on a smooth compact manifold M with a boundary, we consider a class of operators generated by pseudodifferential operators on M and shift operators associated with the group action. For elliptic operators in this class, we obtain a classification up to stable homotopies and show that the group of stable homotopy classes of such problems is isomorphic to the K-group of the crossed product of the algebra of continuous functions on the cotangent bundle over the interior of the manifold and the group G acting on this algebra by automorphisms.
带边界流形上离散群作用椭圆问题的同伦分类
给定具有边界的光滑紧流形M上离散群G的作用,考虑由M上的伪微分算子和与群作用相关的移位算子生成的一类算子。对于该类椭圆算子,我们得到了一个稳定同伦的分类,并证明了该类问题的稳定同伦类群同构于流形内部余切束上的连续函数代数的叉积的k群和通过自同构作用于该代数的G群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信