{"title":"A pulse forming network design for electrothermal-chemical combustion characterization of solid propellants","authors":"M. Del Guercio, I. Stobie, G. Katulka, W. Oberle","doi":"10.1109/PPC.1995.596493","DOIUrl":null,"url":null,"abstract":"The combustion of solid propellants subjected to plasma augmentation, has been studied with a 300 kJ maximum stored energy pulse forming network (PFN) in the range of 1 kJ/g of electrical energy over a 1.2 ms pulse length. A closed chamber vessel is used for the combustion of these solid propellants in which the plasma is injected via a plasma generator. To characterize the effects of such plasma augmentation on propellant combustion over a longer pulse length, this PFN was upgraded to a maximum stored energy output of 400 kJ with a 2.4 ms pulse length. This report discusses the theoretical calculations, PFN upgrade design and fabrication details. Also provided are the design and modifications of the plasma generator that allows a delayed plasma injection with respect to the propellent ignition. Details of the plasma delay firings are also discussed.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1995.596493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The combustion of solid propellants subjected to plasma augmentation, has been studied with a 300 kJ maximum stored energy pulse forming network (PFN) in the range of 1 kJ/g of electrical energy over a 1.2 ms pulse length. A closed chamber vessel is used for the combustion of these solid propellants in which the plasma is injected via a plasma generator. To characterize the effects of such plasma augmentation on propellant combustion over a longer pulse length, this PFN was upgraded to a maximum stored energy output of 400 kJ with a 2.4 ms pulse length. This report discusses the theoretical calculations, PFN upgrade design and fabrication details. Also provided are the design and modifications of the plasma generator that allows a delayed plasma injection with respect to the propellent ignition. Details of the plasma delay firings are also discussed.