Application of voiced-speech variability descriptors to emotion recognition

K. Slot, J. Cichosz, L. Bronakowski
{"title":"Application of voiced-speech variability descriptors to emotion recognition","authors":"K. Slot, J. Cichosz, L. Bronakowski","doi":"10.1109/CISDA.2009.5356537","DOIUrl":null,"url":null,"abstract":"The following paper examines a possibility of applying phone-pronunciation variability descriptors in emotion classification. The proposed group of descriptors comprises a set of statistical parameters of Poincare maps, which are derived for evolution of formant-frequencies and energy of voiced-speech segments. Poincare maps are represented by means of four different parameters that summarize various aspects of plot's scatter. It has been shown that incorporation of the proposed features into a set of commonly-used emotional-speech descriptors, results in a substantial, ten-percent increase in emotion classification performance - recognition rates are at the order of 80% for six-category, speaker independent experiments.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"13 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The following paper examines a possibility of applying phone-pronunciation variability descriptors in emotion classification. The proposed group of descriptors comprises a set of statistical parameters of Poincare maps, which are derived for evolution of formant-frequencies and energy of voiced-speech segments. Poincare maps are represented by means of four different parameters that summarize various aspects of plot's scatter. It has been shown that incorporation of the proposed features into a set of commonly-used emotional-speech descriptors, results in a substantial, ten-percent increase in emotion classification performance - recognition rates are at the order of 80% for six-category, speaker independent experiments.
语音变异性描述符在情绪识别中的应用
下面的文章探讨了在情绪分类中应用语音变异性描述符的可能性。所提出的描述符组包括一组庞加莱映射的统计参数,这些参数是根据语音段的共振频率和能量的演变而导出的。庞加莱图是通过四个不同的参数来表示的,这些参数概括了图散点的各个方面。研究表明,将所提出的特征整合到一组常用的情绪-言语描述符中,可以显著提高10%的情绪分类性能——在六类独立于说话者的实验中,识别率达到80%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信